Synergistic anticancer effects and reduced genotoxicity of silver nanoparticles and tamoxifen in breast cancer cells.

J Biochem Mol Toxicol

Centro de Física Aplicada y Tecnología Avanzada Universidad Nacional Autónoma de México, Juriquilla, Queretaro, Mexico.

Published: October 2024

AI Article Synopsis

  • Nanotechnology, particularly silver nanoparticles (AgNPs), shows promise in improving cancer treatments, especially in overcoming chemotherapy resistance and reducing side effects from toxic drugs.
  • Research demonstrated that combining AgNPs with the drug tamoxifen leads to a synergistic effect that not only increases cell death in breast cancer cells but also prevents their migration and boosts reactive oxygen species production.
  • Despite these effects, the combination of AgNPs and tamoxifen exhibited minimal genotoxicity, and both types of breast cancer cells showed heightened expression of genes linked to cell death and oxidative stress, indicating potential for further exploration in cancer therapy.

Article Abstract

Nanotechnology is emerging as a promising tool to enhance traditional cancer treatments due to rising chemotherapy resistance and the severe side effects of toxic drugs. Silver nanoparticles (AgNPs) are widely acknowledged for their antimicrobial and antiproliferative properties. Given these AgNP characteristics, this research conducts a comprehensive nanotoxicological assessment of strategic combinations involving AgNPs (68 nm) commercial formulation and tamoxifen on MCF-7 and MDA-MB-231 breast tumor cells. Utilizing CompuSyn software, the combination index was determined, revealing a synergistic cytotoxic and antiproliferative effect in AgNPs and tamoxifen combinations (CI < 0.97). Furthermore, this combination impaired cell migration (the scratch zone expanded by over 270%) and significantly increased reactive oxygen species production (up to 96% for MDA-MB-231 and 52% for MCF-7 cells). Surprisingly, the genotoxic effect of these mixtures was minimal (below the allowable genotoxicity index of 1.5). Additionally, both breast tumor cell lines exhibited increased proapoptotic and oxidative stress gene expression following the combined treatment. The internalization of AgNPs into breast cancer cells was observed, enhancing their synergistic antiproliferative effect when combined with tamoxifen. These findings suggest the potential of combining AgNPs with chemotherapeutic agents for innovative studies in oncology therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbt.23823DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
8
synergistic anticancer
4
anticancer effects
4
effects reduced
4
reduced genotoxicity
4
genotoxicity silver
4
nanoparticles tamoxifen
4
tamoxifen breast
4
breast cancer
4
cancer cells
4

Similar Publications

The removal of toxic nitrophenols from the industrial wastewater is urgently needed from health, environmental and economic aspects. The present study deals with the synthesis of crosslinked vinyl polymer Poly(divinylbenzene) (poly(DVB)) through free radical polymerization technique using AIBN as initiator and acetonitrile as solvent. The prepared polymer was used as a support for silver nanoparticles via chemical reduction of silver nitrate on the polymer network.

View Article and Find Full Text PDF

In this study, the endophytic fungus Coniothyrium chaingmaiense-KUMBMDBT-25 was isolated from the healthy stem of Euphorbia tirucalli, mass cultivated by submerged fermentation, and extracted using ethyl acetate as a solvent. The extract was subjected to GC-MS analysis. The synthesized Con-AgNPs were characterized through various bioanalytical methods.

View Article and Find Full Text PDF

Cancer and microbial infections place a significant burden on the world's health systems and can increase the rate of disease and mortality. In the current study, a novel nanocomposite based on Gum Arabic, silver and copper oxide nanoparticles (GA@Ag-CuO nanocomposite) was synthesized to overcome the problem of microbial infection and in cancer treatment. Characterization using UV-Vis.

View Article and Find Full Text PDF

A competitive dual-mode for tetracycline antibiotics sensing based on colorimetry and surface-enhanced Raman scattering.

Biosens Bioelectron

December 2024

State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China. Electronic address:

Tetracycline antibiotics (TCs) are extensively used as broad-spectrum antimicrobials. However, their excessive use and misuse have led to serious accumulation in foods and environments, posing a significant threat to human health. To solve such public issue, we have designed a novel dual-mode detection method, integrating colorimetric sensing with surface-enhanced Raman scattering (SERS) technology, for sensitive and rapid evaluation on TCs.

View Article and Find Full Text PDF

Phytometabolites, Pharmacological Effects, Ethnomedicinal Properties, and Bioeconomic Potential of Velvet Apple (Diospyros discolor Willd.): A Review.

Chem Biodivers

January 2025

Liverpool John Moores University, Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Byrom Street, Liverpool, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Diospyros discolor Willd., commonly known as Velvet apple or Mabolo, is an underutilized fruit. Traditionally, various parts of D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!