Background: Low-intensity extracorporeal shockwave therapy (Li-ESWT) is emerging as a promising and safe treatment for Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). In this study, we aimed to investigate the role of the gut microbiota involved in the prostate microenvironment and symptom improvement during the Li-ESWT for CP/CPPS patients.
Methods: CP/CPPS patients not taking antibiotics or other treatments were included. NIH-Chronic Prostatitis Symptom Index (NIH-CPSI), International Prostate Symptom Score (IPSS), and International Index of Erectile Function (IIEF-5) were used to evaluate the effectiveness of Li-ESWT at the end of treatment. Visual analogue scale/score was used to evaluate the pain during procedure. Stool and semen samples were collected before and after Li-ESWT. Shotgun metagenomics analyzed gut microbiota, while ELISA and other diagnostic kits detected biochemical changes in seminal plasma.
Result: Of the 60 enrolled patients, 52 completed treatment. Li-ESWT response rate was 78.8% (41/52) at end of treatment. Among responders, the subitems of the NIH-CPSI; IPSS; and IIEF-5 scores improved significantly, and the seminal plasma analysis showed decreased TNF-a and MDA levels and increased SOD and Zn levels posttreatment. Gut microbiome analysis indicated that posttreatment, both α and β diversity increased, and the abundance of certain specific species significantly increased. Fifty-eight pathways significantly enriched posttreatment, notably in branched-chain amino acid synthesis and butyrate synthesis. The abundance of several specific species was found to be significantly higher in non-responders than responders. Among responders, at the species level, some bacteria associated with NIH-CPSI and its subscales, IPSS, IIEF-5, and prostate microenvironment markers (TNF-a, MDA, Zn, and SOD) were identified.
Conclusions: Our study demonstrates for the first time that Li-ESWT improves the prostate microenvironment and gut microbiota in CP/CPPS patients. Treatment nonresponse may be associated with a high abundance of specific pathogens before treatment. The gut microbiota could have a significant impact on Li-ESWT response and the prostate microenvironment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pros.24794 | DOI Listing |
Gut Microbes
December 2025
Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China.
Necrotizing Enterocolitis (NEC) is a severe, life-threatening inflammatory condition of the gastrointestinal tract, especially affecting preterm infants. This review consolidates evidence from various biomedical disciplines to elucidate the complex pathogenesis of NEC, integrating insights from clinical, microbial, and molecular perspectives. It emphasizes the modulation of NEC-associated inflammatory pathways by probiotics and novel biologics, highlighting their therapeutic potential.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Introduction: Colorectal cancer (CRC) is the second most common cause of cancer-related deaths globally. The gut microbiota, along with adenomatous polyps (AP), has emerged as a plausible contributor to CRC progression. This study aimed to scrutinize the impact of the FadA antigen derived from Fusobacterium nucleatum on the expression levels of the ANXA2 ceRNA network and assess its relevance to CRC advancement.
View Article and Find Full Text PDFClin Rheumatol
January 2025
Department of Rheumatology, Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, People's Republic of China.
Introduction/objectives: Sjogren's syndrome (SS) is a chronic inflammatory and difficult-to-treat autoimmune disease. Timosaponin AIII (TAIII), a plant-derived steroidal saponin, effectively inhibits cell proliferation, induces apoptosis, and exhibits anti-inflammatory properties. This study explored the mechanisms of action of TAIII in SS treatment by studying gut microbiota and short-chain fatty acids (SCFAs) using fecal metabolomics.
View Article and Find Full Text PDFCurr Microbiol
January 2025
State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China.
Gut mucosal immunity of teleost is mainly governed by mucosa-associated lymphoid tissues (MALT) and indigenous microbiota on mucosal surfaces of gut tract, which can confer protection against pathogenic invasion. However, the probiotic features of bacterial isolates from gut tract of triploid cyprinid fish (TCF) were largely unclear. In this study, Lysinibacillus and Enterobacter strains were isolated for probiotic identification.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Hangzhou, 310058, Zhejiang, China.
The widespread use of antibiotics has led to the emergence of multidrug-resistant bacteria, which pose significant threats to animal health and food safety. Host defense peptides (HDPs) have emerged as promising alternatives because of their unique antimicrobial properties and minimal resistance induction. However, the high costs associated with HDP production and incorporation into animal management practices hinder their widespread application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!