Chronic kidney disease (CKD), stemming from varied nephric impairments, manifests a steadily escalating global incidence. As a progressive pathological condition, CKD is typified by an intensification in the gravity of renal interstitium fibrotic transformations. Nonetheless, the intrinsic mechanisms underpinning nephric fibrosis remain elusive. In this context, we elucidated a marked augmentation in aerobic glycolysis within proximal tubular epithelial cells (TECs) of CKD patients, alongside unilateral ureteral obstruction (UUO) and ischemia-reperfusion injury (IRI) murine models, concomitant with deficiency of Trim21. Experimental investigations, both in vivo and in vitro, revealed that Trim21 deficiency aggravates the aberrantly heightened aerobic glycolysis, thereby exacerbating fibrotic reaction progression. Concomitantly, enhancive glycolytic flux paralleled an elevation in ATP genesis and reconstitution of cytoskeletal architecture. Mechanistically, we uncovered that Trim21 modulates aerobic glycolysis in TECs via ubiquitin-facilitated degradation of phosphofructokinase platelet (PFKP), thus attenuating nephric fibrosis. Collectively, our insights posit Trim21 as a prospective therapeutic target in the amelioration of renal fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.31439DOI Listing

Publication Analysis

Top Keywords

aerobic glycolysis
12
renal fibrosis
8
nephric fibrosis
8
trim21
5
trim21 mediates
4
mediates metabolic
4
metabolic reprogramming
4
renal
4
reprogramming renal
4
renal tubular
4

Similar Publications

Metabolic Signaling in the Tumor Microenvironment.

Cancers (Basel)

January 2025

Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.

Cancer cells must reprogram their metabolism to sustain rapid growth. This is accomplished in part by switching to aerobic glycolysis, uncoupling glucose from mitochondrial metabolism, and performing anaplerosis via alternative carbon sources to replenish intermediates of the tricarboxylic acid (TCA) cycle and sustain oxidative phosphorylation (OXPHOS). While this metabolic program produces adequate biosynthetic intermediates, reducing agents, ATP, and epigenetic remodeling cofactors necessary to sustain growth, it also produces large amounts of byproducts that can generate a hostile tumor microenvironment (TME) characterized by low pH, redox stress, and poor oxygenation.

View Article and Find Full Text PDF

Cancer cells undergo remarkable metabolic changes to meet their high energetic and biosynthetic demands. The Warburg effect is the most well-characterized metabolic alteration, driving cancer cells to catabolize glucose through aerobic glycolysis to promote proliferation. Another prominent metabolic hallmark of cancer cells is their increased reliance on glutamine to replenish tricarboxylic acid (TCA) cycle intermediates essential for ATP production, aspartate and fatty acid synthesis, and maintaining redox homeostasis.

View Article and Find Full Text PDF

Alzheimer's disease (AD), the most prevalent form of dementia in the elderly, involves critical changes such as reduced aerobic glycolysis in astrocytes and increased neuronal apoptosis, both of which are significant in the disease's pathology. In our study, astrocytes treated with amyloid β1-42 (Aβ) to simulate AD conditions exhibited upregulated expressions of small ubiquitin-like modifier (SUMO)-specific protease 1 (SENP1) and Pumilio RNA Binding Family Member 2 (PUM2), alongside decreased levels of Nuclear factor erythroid 2-related factor 2 (NRF2). SENP1 is notably the most upregulated SUMOylation enzyme in Aβ-exposed astrocytes.

View Article and Find Full Text PDF

The intervention of B. longum metabolites in Fnevs' carcinogenic capacity: A potential double-edged sword.

Exp Cell Res

January 2025

Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China. Electronic address:

Colorectal cancer (CRC) ranks among the most prevalent malignant tumors globally. Fusobacterium nucleatum and its metabolites are effective biological targets for colon cancer promotion. Probiotics such as Bifidobacterium can block the occurrence and development of CRC by regulating the host intestinal mucosal immunity, eliminating carcinogens, and interfering with tumor cell proliferation and apoptosis.

View Article and Find Full Text PDF

The underlying mechanisms explaining the differential course of SARS-CoV-2 infection and the potential clinical consequences after COVID-19 resolution have not been fully elucidated. As a dysregulated mitochondrial activity could impair the immune response, we explored long-lasting changes in mitochondrial functionality, circulating cytokine levels, and metabolomic profiles of infected individuals after symptoms resolution, to evaluate whether a complete recovery could be achieved. Results of this pilot study evidenced that different parameters of aerobic respiration in lymphocytes of individuals recuperated from a severe course lagged behind those shown upon mild COVID-19 recovery, in basal conditions and after simulated reinfection, and they also showed altered glycolytic capacity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!