Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Traditional Chinese medicine(TCM) placebos are simulated preparations for specific objects and the color simulation in the development of TCM placebos is both crucial and challenging. Traditionally, the prescription screening and pattern exploration process involves extensive experimentation, which is both time-consuming and labor-intensive. Therefore, accurate prediction of color simulation prescriptions holds the key to the development of TCM placebos. In this study, we efficiently and precisely predict the color simulation prescriptions of placebos using an image-based approach combined with Matlab software. Firstly, images of TCM placebo solutions are captured, and 13 chromaticity space values such as the L* a* b*, RGB, HSV, and CMYK values are extracted using Photoshop software. Correlation analysis and normalization are then performed on these extracted values to construct a 13×9×3 back propagation(BP) neural network model. Subsequently, the whale optimization algorithm(WOA) is employed to optimize the initial weights and thresholds of the BP neural network. Finally, the optimized WOA-BP neural network is validated using three representative instances. The training and prediction results indicate that, compared to the BP neural network, the WOA-BP neural network demonstrates superior performance in predicting the pigment ratios of placebos. The correlation coefficients for training, validation,testing, and the overall dataset are 0. 95, 0. 87, 0. 95, and 0. 95, respectively, approaching unity. Furthermore, all error values are reduced, with the maximum reduction reaching 99. 83%. The color difference(ΔE) values for the three validation instances are all less than 3, further confirming the accuracy and practicality of the WOA-BP neural network approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.19540/j.cnki.cjcmm.20240423.301 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!