[Mechanism of ligustilide in attenuating OGD/R-induced HT22 cell injury based on FtMt inhibition of ferroptosis].

Zhongguo Zhong Yao Za Zhi

Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine Hefei 230012, China Anhui Province Key Laboratory of Traditional Chinese Medicine Compounds,Anhui University of Chinese Medicine Hefei 230012, China Institute for Pharma-codynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine Hefei 230012, China.

Published: August 2024

This study investigated the role and mechanism of ligustilide(LIG) in attenuating oxygen-glucose deprivation/reoxyge-nation(OGD/R)-induced damage to mouse hippocampal neuron cells(HT22) by inhibiting ferroptosis through mitochondrial ferritin(FtMt). An in vitro model of OGD/R-induced HT22 cell damage was established. HT22 cells were randomly divided into normal group, model group, LIG groups(5, 10, and 20 μmol·L~(-1)), and ferrostatin-1(Fer-1, 2 μmol·L~(-1)) group. Cell viability was mea-sured using the CCK-8 method, and lactate dehydrogenase(LDH) release was measured using an LDH assay kit. Cell morphology was observed under an inverted microscope, and mitochondrial ultrastructure was observed using transmission electron microscopy. Intracellular Fe~(2+) content was detected using a chemiluminescence method. To further investigate the mechanism of FtMt inhibition of ferroptosis, FtMt in HT22 cells was silenced and divided into normal group, model group, LIG group(20 μmol·L~(-1)), si-NC group, si-FtMt group, and si-FtMt+20 μmol·L~(-1) LIG group. Immunofluorescence and Western blot were used to detect FtMt expression. Chemiluminescence was used to measure the content of NADPH/NADP~+, GSH, MDA, and ATP in HT22 cells. The mtROS fluorescence intensity was observed by laser confocal microscopy, and intracellular Fe~(2+) content was measured by flow cytometry. The expression of ferroptosis-related proteins Ferrtin, GPX4, and ACSL4 was detected by Western blot. The results showed that compared with the model group, LIG significantly increased the survival rate of HT22 cells, improved the morphology of damaged HT22 cells and mitochondrial ultrastructure, decreased intracellular Fe~(2+) content, and reduced the expression of the pro-ferroptosis protein ACSL4 while increasing the expression of anti-ferroptosis proteins Ferrtin and GPX4. After silencing FtMt, LIG promoted FtMt expression. Compared with the si-FtMt group, LIG significantly increased the content of NADPH/NADP~+ and GSH, reduced mtROS fluorescence intensity and MDA content, increased ATP activity, decreased intracellular Fe~(2+) content, inhibited the expression of pro-ferroptosis protein ACSL4, and increased the expression of anti-ferroptosis proteins Ferrtin and GPX4. In summary, LIG improved mitochondrial function by upregula-ting FtMt expression to inhibit ferroptosis, thereby alleviating OGD/R-induced damage to HT22 cells.

Download full-text PDF

Source
http://dx.doi.org/10.19540/j.cnki.cjcmm.20240412.704DOI Listing

Publication Analysis

Top Keywords

ht22 cells
24
group lig
16
intracellular fe~2+
16
fe~2+ content
16
model group
12
ftmt expression
12
proteins ferrtin
12
ferrtin gpx4
12
group
10
ht22
8

Similar Publications

Background: In Alzheimer's disease (AD), histone acetylation is disrupted, suggesting loss of transcriptional control. Moreover, converging evidence suggests an age- and AD-dependent loss of transcription controlled by all-trans-retinoic acid (ATRA), the bioactive metabolite of vitamin A (VA). Antioxidant depletion causes oxidative stress (OS).

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.

Background: The reduced phagocytosis of amyloid β (Aβ) by microglia is linked to increased cognitive decline in Alzheimer's disease (AD) patients. Previous methods utilized anti-Aβ antibodies and flow cytometry to reveal Aβ surface binding without internalization. This study introduces a "Two-Color Fluorescent Reporting System" to overcome limitations, allowing differentiation between intra- and extracellular Aβ.

View Article and Find Full Text PDF

S-Sulfocysteine (SSC) is a metabolite derived from the metabolism of sulfur-containing amino acids. It has been implicated in neurotoxicity observed in children with sulfite oxidase deficiency. The aim of our study was to confirm the neurotoxic effects of SSC using a mouse hippocampal cell line (HT-22) and to investigate the role of apoptosis in these effects, especially in terms of caspase-3 activation and genotoxicity.

View Article and Find Full Text PDF

Ginsenoside Rd alleviates early brain injury by inhibiting ferroptosis through cGAS/STING/DHODH pathway after subarachnoid hemorrhage.

Free Radic Biol Med

December 2024

Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China; Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China. Electronic address:

Ferroptosis, a recently identified form of regulated cell death, is characterized by lipid peroxidation and iron accumulation, plays a critical role in early brain injury after subarachnoid hemorrhage. Ginsenoside Rd, an active compound isolated from ginseng, is known for its neuroprotective properties. However, its influence on SAH-induced ferroptosis remains unclear.

View Article and Find Full Text PDF

Acute ischemic stroke (AIS) is a severe disorder characterized by complex pathophysiological processes, which can lead to disability and death. This study aimed to determine necroptosis-associated genes in acute ischemic stroke (AIS) and to investigate their potential as diagnostic and therapeutic targets for AIS. Expression profiling data were acquired from the Gene Expression Omnibus database, and necroptosis-associated genes were retrieved from GeneCards.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!