This study focuses on optimizing the delivery of Nelfinavir (NFV), a vital protease inhibitor in antiretroviral therapy, and Epigallocatechin gallate (EGCG), a potent adjunctive anti- human immunodeficiency virus (anti-HIV) agent found in green tea. The challenge lies in NFV's low intrinsic dissolution rate, significant p-gp efflux, and high hepatic metabolism, necessitating frequent and high-dose administration. Our objective was to develop a nanoemulsion loaded with NFV and EGCG to enhance oral delivery, expediting antiretroviral effects for NeuroAIDS treatment. After meticulous excipient screening, we selected Tween 40 as the surfactant and polyethylene glycol 400 (PEG 400) as the co-surfactant. Employing a Quality by Design (QbD) approach with statistical multivariate methods, we optimized the nanoemulsion that exhibited a droplet size of 83.21 nm, polydispersity index (PDI) of 2.289, transmittance of 95.20 %, zeta potential of 1.495 mV, pH of 6.95, refractive index of 1.40, viscosity of 24.00 ± 0.42 mPas, and conductivity of 0.162 μS/cm. Pharmacokinetic studies demonstrated superior in vivo absorption of the optimized nanoemulsion compared to NFV and EGCG suspension. The optimized nanoemulsion showcased higher C of NFV (9.75 ± 1.23 μg/mL) and EGCG (27.7 ± 1.22 μg/mL) in the brain, along with NFV (26.44 ± 1.44 μg/mL) and EGCG (313.20 ± 5.53 μg/mL) in the plasma. This study advocates for the potential of NFV and EGCG-loaded nanoemulsion in combination antiretroviral therapy (cART) for effective NeuroAIDS management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.135885 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!