The increasing demand for plastic has resulted in a surge in plastic waste production. Polyethylene terephthalate (PET), commonly used in beverage bottle manufacturing, is only partially recycled, with an estimated recycling rate of just 28.4% in 2019. This accumulation of plastic waste is harmful to the environment and living organisms, necessitating effective recycling methods for PET waste. One promising method is alkaline hydrolysis using NaOH, which can break down PET into its monomer components, terephthalic acid (TPA) and ethylene glycol (EG). This process not only recycles PET efficiently but also manages contaminants effectively, producing high-quality TPA, supporting the development of a circular economy. This study looks into PET depolymerization via alkaline hydrolysis at low temperature by investigating effects of various factors: pH levels, water to ethanol ratio, NaOH concentration, NaOH to PET ratio, reaction time, PET size, reusability of unreacted PET, air plasma pretreatment of PET, and different kinds of PET. Promisingly, PET conversion rates of over 90% and a TPA purity of 99.6% were achieved in this study highlighting the efficacy of alkaline hydrolysis in depolymerizing post-consumer PET waste. Ultimately, this research advances sustainable plastic waste management and supports the integration of PET into a circular economy framework.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.143391 | DOI Listing |
J Environ Manage
December 2024
Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, Aas, 1430, Norway.
Primary sludge can serve as an internal carbon source for denitrification in wastewater treatment plants (WWTPs). This study explores the use of alkaline treatment to produce a fermentation broth from primary sludge, which predominantly contains short-chain volatile fatty acids (VFAs), with acetic acid and propionic acid making up over 65% of the total VFAs. The performance of this fermentation broth as a sole carbon source for denitrification was compared with that of sodium acetate, acetic acid, methanol, and ethanol in both biofilm and activated sludge systems.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China. Electronic address:
Silver nanoparticles (AgNPs) exhibit broad-spectrum antibacterial activity and serve as effective antimicrobial agents against antibiotic-resistant bacteria. In this study, agricultural waste corn straw was used as the raw material to obtain cellulose nanocrystal (CNC) through enzymatic hydrolysis. The hydrolysate was employed as reducing agents to synthesize CNC-AgNPs.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
Polymer-based catalysts have garnered significant interest for their efficiency, reusability, and compatibility with various synthesis processes. In catalytic applications, polymers offer the advantage of structural versatility, enabling functional groups to be tailored for specific catalytic activities. In this study, we developed a novel magnetic copolymer of methyl methacrylate and maleic anhydride (PMMAn), synthesized via in situ chemical polymerization of methyl methacrylate onto maleic anhydride, using benzoyl peroxide as a free-radical initiator.
View Article and Find Full Text PDFMetabolites
November 2024
Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS, University Lyon, F-69367 Lyon, France.
Phosphatases are enzymes that catalyze the hydrolysis of phosphate esters. They play critical roles in diverse biological processes such as extracellular nucleotide homeostasis, transport of molecules across membranes, intracellular signaling pathways, or vertebrate mineralization. Among them, tissue-nonspecific alkaline phosphatase (TNAP) is today increasingly studied, due to its ubiquitous expression and its ability to dephosphorylate a very broad range of substrates and participate in several different biological functions.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China.
is a tasty and low-calorie mushroom containing abundant high-quality protein. This study aims to improve the digestibility of protein (PEP) and hence to facilitate its development as a healthy alternative protein. The extracted PEP was pretreated with 1000-5000 U of papain, neutral protease and alkaline protease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!