A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

CardioGuard: AI-driven ECG authentication hybrid neural network for predictive health monitoring in telehealth systems. | LitMetric

The increasing integration of telehealth systems underscores the importance of robust and secure methods for patient data management. Traditional authentication methods, such as passwords and PINs, are prone to breaches, underscoring the need for more secure alternatives. Therefore, there is a need for alternative approaches that provide enhanced security and user convenience. Biometric-based authentication systems uses individuals unique physical or behavioral characteristics for identification, have emerged as a promising solution. Specifically, Electrocardiogram (ECG) signals have gained attention among various biometric modalities due to their uniqueness, stability, and non-invasiveness. This paper presents CardioGaurd, a deep learning-based authentication system that leverages ECG signals-unique, stable, and non-invasive biometric markers. The proposed system uses a hybrid Convolution and Long short-term memory based model to obtain rich characteristics from the ECG signal and classify it as authentic or fake. CardioGaurd not only ensures secure access but also serves as a predictive tool by analyzing ECG patterns that could indicate early signs of cardiovascular abnormalities. This dual functionality enhances patient security and contributes to AI-driven disease prevention and early detection. Our results demonstrate that CardioGaurd offers superior performance in both security and potential predictive health insights compared to traditional models, thus supporting a shift towards more proactive and personalized telehealth solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.slast.2024.100193DOI Listing

Publication Analysis

Top Keywords

predictive health
8
telehealth systems
8
ecg
5
cardioguard ai-driven
4
ai-driven ecg
4
authentication
4
ecg authentication
4
authentication hybrid
4
hybrid neural
4
neural network
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!