Atherosclerosis (AS) is a chronic inflammatory disease which associated with a maladaptive immune response driven by macrophages. In the development of AS, macrophages have gradually become new therapeutic targets due to their involvement in numerous inflammatory-related pathological processes in AS. However, despite significant breakthroughs in the development of macrophages targeting nanocarriers, unsatisfactory drug loading, and inexact drug release limited the development of nano-therapy. Therefore, developing a high drug-loading nanocarrier that can accurately release drugs at AS lesions is quite essential. Herein, we optimized double moieties coupled mPEG-PLA copolymer micelles via phenylboronic acid (PBA)-terminated on the hydrophobic chain and cRGD coupled in hydrophilic chain to enhance AS therapy. The micelles loaded with andrographolide (AND) exhibited advanced drug loading capacity, as PBA could form a reversible boronic ester with AND at physiological pH. The cRGD-modified AND-loaded micelles (RPPPA) could be efficaciously internalized by macrophages and efficiently prevent macrophages from differentiating to foam cells. After intravenous administration, RPPPA could accumulate in plaques and exert therapeutic effects. The optimistic therapeutic results of atherosclerosis were shown in RPPPA, included the fewer plaques, a smaller necrotic core, a more stabilized fibrous cap, and lower macrophages and MMP-9, compared with the control group. To sum up, the proposed encouraging therapy can contribute to high drug loading, exact target, and precise drug release as well as reduce inflammation for AS treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2024.124705 | DOI Listing |
Sci Rep
December 2024
Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India.
The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.
This paper introduces an evidence-based, design-of-experiments (DoE) approach to analyze and optimize drug delivery systems, ensuring that release aligns with the therapeutic window of the medication. First, the effective factors and release data of the system are extracted from the literature and meta-analytically undergo regression modeling. Then, the interaction and correlation of the factors to each other and the release amount are quantitatively assessed.
View Article and Find Full Text PDFJ Control Release
December 2024
Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China. Electronic address:
Many brain-targeting drug delivery strategies have been reported to permeate the blood-brain barrier (BBB) via hijacking receptor-mediated transport. However, these receptor-based strategies could mediate whole-brain BBB crossing due to the wide intracranial expression of target receptors and lead to unwanted accumulation and side effects on healthy brain tissues. Inspired by brain metastatic processes and the selectivity of brain metastatic cancer cells for the inflammatory BBB, a biomimetic nanoparticle was developed by coating drug-loaded core with the inflammatory BBB-seeking erythrocyte-brain metastatic hybrid membrane, which can resist homotypic aggregation and specially bind and permeate the inflammatory BBB for specific drug delivery.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China. Electronic address:
Traditional wound closure methods often present several issues, including additional puncture wounds, adverse effects from anesthesia, and noticeable scarring. Inspired by embryonic wound healing, a Janus hydrogel (PG/Au-Asp@PCM) is designed to manipulate non-invasive wound closure by photothermal-responsive self-contraction of PG/Au-Asp@PCM, which is attributed to the shape memory behavior of PG/Au-Asp@PCM under near-infrared (NIR). Wherein, gelatin acts as a thermally reversible "switch" and polyacrylamide creates stable and cross-linked "net-points".
View Article and Find Full Text PDFInt J Pharm
December 2024
Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem 9103501, Israel. Electronic address:
Chlorhexidine (CHX) is a gold standard therapeutic agent against clinical oral pathogens. However, its oral use is limited due to unpleasant taste, alteration in taste buds, staining of teeth and mucous membranes. Therefore, CHX-loaded PLGA microneedles (MNs) were fabricated for local and controlled release in the oral cavity, using a casting mold method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!