Ultrafiltration (UF) is demonstrated to be highly effective in the removal of microplastics (MPs), but the presence of coexisting foulants introduces significant uncertainties into the associated membrane fouling behaviors. In this study, membrane fouling mechanisms were investigated when MPs, represented by polystyrene (PS), coexisted with typical organic foulants (sodium alginate, SA) and inorganic ions (Ca). Fouling tests revealed that the order of Ca addition significantly impacted the fouling behavior of the SA-PS combined foulants. Specifically, the specific filtration resistance (SFR) was reduced by 40.82 % in the SA-PS-Ca foulants and by 90.92 % in the SA-Ca-PS foulants, compared to the SA-PS foulants. X-ray photoelectron spectroscopy and density functional theory calculations indicated that sufficient cross-linking of Ca with SA molecular chains in the SA-Ca-PS foulants, forming a large-scale 3D network that encapsulated more PS particles and resulted in larger flocs than those found in the SA-PS-Ca foulants. According to extended Flory-Huggins theory, the improved filtration performance of the SA-PS combined foulants was due to substantial changes in chemical potential during their transition from gel to flocs upon Ca addition. Furthermore, interfacial thermodynamic analyses suggested that increased repulsion between SA-Ca-PS foulants and between them and the membrane led to a looser fouling layer, significantly mitigating membrane fouling. This study elucidates the fouling mechanisms in the presence of MPs and other foulants from the perspectives of energy changes and molecular structures, providing novel insights for developing strategies to mitigate membrane fouling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.176446 | DOI Listing |
J Environ Manage
January 2025
Chemical Engineering Department, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia; Research Center for Biosciences and Biotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia.
This article reviews the role of membrane systems in treating palm oil mill effluent (POME), a waste generated by the palm industry. The review focuses on various membrane systems such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), highlighting their effectiveness in removing pollutants and recovering water. Special attention is given to hybrid systems integrating membrane bioreactors (MBRs) and other advanced processes to enhance fouling control, improve water quality, and promote sustainability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
Marine biofouling and corrosion have become the main problems affecting the development of the marine industry. Silicone-based coatings have been widely used for antifouling and anticorrosion due to their low surface energy. However, the poor adhesion and low mechanical stability of these materials limit their application in complex marine environments.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Civil Engineering and Architecture, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan, 250022, Shandong Province, PR China. Electronic address:
Membrane bioreactors (MBRs) can effectively remove microplastics (MPs) because of their good rejection performance. However, the influence of MP concentration and particle size on the short-term and long-term operation efficiency of MBRs remains unclear. To address this issue, this study investigated the effects of short-term stress and long-term accumulation of polypropylene microplastics (PP-MPs) with different particle sizes on the operational efficiency of MBRs by running three MBR systems at four concentration stages.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China. Electronic address:
Groundwater is widely threatened by hazardous manganese and ammonia. In present study, a novel gravity-driven fixed-bed ceramic membrane filtration (GDFBCM) with critical PAC-MnOx-ceramsite filters was built to address these issues. Static ceramsite filters in GDCM significantly increased membrane flux from 11 L/m·h to 18 L/m·h on the 50th day of filtration.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, PR China; Dalian Key Laboratory of Internal Combustion Engine Tribology and Reliability Engineering, Dalian 116026, PR China. Electronic address:
As a global challenge, marine biofouling is causing serious economic losses and adverse ecological impacts. In recent years, a variety of promising and environmentally friendly anti-fouling strategies have emerged, among which the excellent anti-fouling performance of bionic autocrine coatings has been recognized. However, bionic autocrine coatings still suffer from uncontrollable secretion behavior, poor mechanical stability, and poor abrasion resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!