With the regulation and phase-out of conventional per- and polyfluoroalkyl substances (PFAS), there is a growing trend towards seeking alternatives that are less toxic and less persistent. Hexafluoropropylene oxide trimer acid (HFPO-TA) is one of the alternatives to perfluorooctanoic acid (PFOA), the latter being widely present in the environment globally. However, there is limited information regarding the biological toxicity of HFPO-TA to aquatic organisms. In this study, the freshwater benthic amphipod, Hyalella azteca, was used to assess the acute and chronic toxicity of HFPO-TA in both water and sediment. HFPO-TA was found to be more toxic to H. azteca than PFOA, as indicated by greater production of reactive oxygen species (p < 0.05) and increasing catalase activity (p < 0.05). In addition, exposure to HFPO-TA affected the swimming behavior and the acetylcholinesterase (AChE) activity of the amphipod. Molecular docking models revealed that HFPO-TA can bind to AChE with a stronger binding affinity than PFOA. Furthermore, an integrated biomarker response index indicated that environmentally relevant concentration (1-100 μg/L) of HFPO-TA may cause toxicity to H. azteca, encompassing oxidative stress and neurotoxicity. This study provides new insights into the toxicity mechanisms of HFPO-TA and is valuable for assessing the ecological safety of this compound.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.176434 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!