Background: Autophagy plays an important role in the pathogenesis of focal segmental glomerulosclerosis (FSGS). Podocyte-specific Yes-associated protein (YAP) deletion mice, referred to as YAP-KO mice, is considered a new animal model to study the underlying mechanism of FSGS. ROC-325 is a novel small-molecule lysosomal autophagy inhibitor that is more effective than chloroquine (CQ) and hydroxychloroquine (HCQ) in suppressing autophagy. In this study, we sought to determine the therapeutic benefit and mechanism of action of ROC-325 in YAP-KO mice, an experimental FSGS model.
Methods And Results: YAP-KO mice were treated with ROC-325 (50 mg/kg, p.o.) daily for one month. Our results revealed that albuminuria, mesangial matrix expension, and focal segmental glomerulosclerosis in YAP-KO mice were significantly attenuated by ROC-325 administration. Transmission electron microscopy and immunofluorescence staining showed that ROC-325 treatment significantly inhibited YAP-KO-induced autophagy activation by decreasing autophagosome-lysosome fusion and increasing LC3A/B and p62/SQSTM. Meanwhile, Immunofluorescence staining revealed that preapplication of ROC-325 in podocyte with YAP-targeted siRNA and mRFP-GFP-LC3 adenovirus markedly suppressed autophagic flux in vitro, suggesting that autophagy intervention may serve as a target for FSGS.
Conclusions: These results showed that the role of autophagic activity in FSGS mice model and ROC-325 could be a novel and promising agent for the treatment of FSGS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2024.177007 | DOI Listing |
J Pathol
January 2025
Department of Pathology of School of Basic Medical Sciences, Fudan University, Kidney and Dialysis Institute of Shanghai, Shanghai, PR China.
Severe proteinuria in focal segmental glomerulosclerosis (FSGS) is closely associated with decreased adhesion, and subsequent loss, of podocytes. Yes-associated protein (YAP) is a key transcriptional coactivator that plays a significant role in maintaining cellular homeostasis. However, its role in podocyte adhesion and its specific mechanism in FSGS progression remain unclear.
View Article and Find Full Text PDFEur J Pharmacol
November 2024
Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China. Electronic address:
Background: Autophagy plays an important role in the pathogenesis of focal segmental glomerulosclerosis (FSGS). Podocyte-specific Yes-associated protein (YAP) deletion mice, referred to as YAP-KO mice, is considered a new animal model to study the underlying mechanism of FSGS. ROC-325 is a novel small-molecule lysosomal autophagy inhibitor that is more effective than chloroquine (CQ) and hydroxychloroquine (HCQ) in suppressing autophagy.
View Article and Find Full Text PDFFree Radic Biol Med
September 2024
Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang School of Clinical Medicine with Nanjing Medical University, Zhenjiang, Jiangsu, China. Electronic address:
Background: Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is intricately involved in modulating the inflammatory response in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Nevertheless, the myeloid PTEN governing Hippo-YAP pathway mediated oxidative stress and inflammation in lipopolysaccharide (LPS)-induced ALI remains to be elucidate.
Methods: The floxed Pten (Pten) and myeloid-specific Pten knockout (Pten) mice were intratracheal instill LPS (5 mg/kg) to establish ALI, then Yap siRNA mix with the mannose-conjugated polymers was used to knockdown endogenous macrophage YAP in some Pten mice before LPS challenged.
J Mol Cell Cardiol
August 2023
Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA. Electronic address:
Inflammation is an integral component of cardiovascular disease and is thought to contribute to cardiac dysfunction and heart failure. While ischemia-induced inflammation has been extensively studied in the heart, relatively less is known regarding cardiac inflammation during non-ischemic stress. Recent work has implicated a role for Yes-associated protein (YAP) in modulating inflammation in response to ischemic injury; however, whether YAP influences inflammation in the heart during non-ischemic stress is not described.
View Article and Find Full Text PDFIUBMB Life
December 2021
Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China.
Hippo signaling pathway is involved in many biological processes including the fate decision of embryonic stem cells (ESCs). Yes-associated protein (Yap) function as a key effector of Hippo pathway, but its role in ESCs is still controversial. So far, only two isoforms of Yap have been identified and they have both overlapping and distinct functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!