Cardiovascular mortality is particularly high and increasing in patients with chronic kidney disease, with vascular calcification (VC) as a major pathophysiologic feature. VC is a highly regulated biological process similar to bone formation involving osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). We have previously demonstrated that loss of T-cell death-associated gene 51 (TDAG51) expression leads to an attenuation of medial VC. We now show a significant induction of circulating levels of growth differentiation factor 10 (GDF10) in TDAG51 mice, which was of interest due to its established role as an inhibitor of osteoblast differentiation. The objective of this study was to examine the role of GDF10 in the osteogenic transdifferentiation of VSMCs. Using primary mouse and human VSMCs, as well as ex vivo aortic ring cultures, we demonstrated that treatment with recombinant human (rh) GDF10 mitigated phosphate-mediated hydroxyapatite (HA) mineral deposition. Furthermore, ex vivo aortic rings from GDF10 mice exhibited increased HA deposition compared to C57BL/6J controls. To explain our observations, we identified that rhGDF10 treatment reduced protein expression of runt-related transcription factor 2, a key driver of osteogenic transdifferentiation of VSMCs and VC. In support of these findings, in vivo treatment with rhGDF10 attenuated VD-induced VC. Furthermore, we demonstrated an increase in circulating GDF10 in patients with chronic kidney disease with clinically defined severe VC, as assessed by coronary artery calcium score. Thus, our studies identify GDF10 as a novel inhibitor of mineral deposition and as such, may represent a potential novel biomarker and therapeutic target for the detection and management of VC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541827PMC
http://dx.doi.org/10.1016/j.jbc.2024.107805DOI Listing

Publication Analysis

Top Keywords

osteogenic transdifferentiation
12
vascular calcification
8
patients chronic
8
chronic kidney
8
kidney disease
8
transdifferentiation vsmcs
8
ex vivo aortic
8
mineral deposition
8
gdf10
7
gdf10 negative
4

Similar Publications

Metformin reverts aortic calcifications and elastin loss induced by an experimental metabolic syndrome.

Endocr Connect

January 2025

A McCarthy, LIOMM, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, La Plata, 1900, Argentina.

Metabolic syndrome (MetS) is associated with osteogenic transdifferentiation of vascular smooth muscle cells (VSMC) and accumulation of arterial calcifications (AC). Metformin (MET) inhibits this transdifferentiation in vitro. Here, we evaluate the in vivo efficacy of oral MET to reduce AC in a model of MetS.

View Article and Find Full Text PDF

O-GlcNAc transferase promotes vascular smooth muscle calcification through modulating Wnt/β-catenin signaling.

FASEB J

December 2024

Xinxiang Key Laboratory of Metabolism and Integrative Physiology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China.

Vascular calcification (VC), associated with high cardiovascular mortality in patients with chronic kidney disease (CKD), involves osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). O-GlcNAcylation, a dynamic post-translational modification, is closely linked to cardiovascular diseases, including VC. However, the exact role and molecular mechanism of O-GlcNAc signaling in abnormal mineral metabolism-induced VC remain unclear.

View Article and Find Full Text PDF

The Bone-Vascular Axis: A Key Player in Chronic Kidney Disease Associated Vascular Calcification.

Kidney Dis (Basel)

December 2024

Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.

Background: The bone-vascular axis plays a key role in the pathogenesis of vascular calcification (VC) in patients with chronic kidney disease (CKD). Understanding and managing the role of the bone-vascular axis in CKD-mineral and bone disorder (CKD-MBD) is critical for preventing and treating associated complications, including osteoporosis, arterial calcification, and cardiovascular diseases. This study aimed to comprehensively summarize the role of bone metabolism markers in uremic VC.

View Article and Find Full Text PDF

Dapagliflozin targets SGLT2/SIRT1 signaling to attenuate the osteogenic transdifferentiation of vascular smooth muscle cells.

Cell Mol Life Sci

November 2024

Institute of Immunology and Department of Cardiology at Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China.

Vascular calcification is a complication that is frequently encountered in patients affected by atherosclerosis, diabetes, and chronic kidney disease (CKD), and that is characterized by the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). At present, there remains a pressing lack of any effective therapies that can treat this condition. The sodium-glucose transporter 2 (SGLT2) inhibitor dapagliflozin (DAPA) has shown beneficial effects in cardiovascular disease.

View Article and Find Full Text PDF

Histone deacetylase 9 promotes osteogenic trans-differentiation of vascular smooth muscle cells via ferroptosis in chronic kidney disease vascular calcification.

Ren Fail

December 2024

Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Chengdu, China.

Vascular calcification, a common complication of chronic kidney disease (CKD), remains an unmet therapeutic challenge. The trans-differentiation of vascular smooth muscle cells (VSMCs) into osteoblast-like cells is crucial in the pathogenesis of vascular calcification in CKD. Despite ferroptosis promotes vascular calcification in CKD, the upstream or downstream regulatory mechanisms involved remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!