Researchers are exploring non-invasive neuromodulation techniques like transcranial direct current stimulation (tDCS) and neurofeedback (NFB) for enhancing motor learning. While tDCS modulates brain excitability using exogenous electric fields, NFB is an endogenous brain stimulation technique that enables individuals to regulate brain excitability in a closed-loop system. Despite their differing mechanisms, a direct comparison of their effects on motor learning is lacking. This study aimed to compare tDCS and NFB on online learning, short-term offline learning, and long-term offline learning in healthy participants, seeking to identify the most effective method for motor learning enhancement. In this parallel, randomized, single-blinded, controlled trial, 100 healthy participants were randomly assigned to one of five groups: real tDCS, sham tDCS, real NFB, sham NFB, and passive control. Primary outcomes included normalized reaction time (NRT), normalized response accuracy (NRA), and normalized skill index (NSI), measured through a serial reaction time task. Secondary outcomes involved physical and mental fatigue, assessed using a visual analog scale. The study involved 14 blocks of 80 trials each. Online learning was assessed by changes in NRT, NRA, and NSI between Block 3 and Block 9. Short-term and long-term offline learning were evaluated by changes in these measures between Block 9 and Block 11, and between Block 9 and Block 13, respectively. RESULTS: showed a significant decrease in NRA in the sham tDCS and passive control groups from block 3-9, with no changes in other groups. NRT significantly decreased in all intervention groups from block 9-11, with no change in the control group. The NSI significantly increased across all intervention groups between blocks 9 and 11, with large to very large effect sizes, while the passive control group saw a medium effect size increase. Furthermore, NRA significantly increased in the real NFB and real tDCS groups from block 9 to block 13. NRT also significantly decreased in all intervention groups when comparing block 13 to block 9, while the passive control group showed no significant changes. Notably, the reduction in NRT from block 9 to block 13 was significantly greater in the real tDCS group than in the control group, with a mean difference of 0.087 (95 % CI: 0.004-0.169, p = 0.031). Additionally, NSI significantly increased in all intervention groups except the control group from block 9 to block 13. In conclusion, neither NFB nor tDCS had a significant positive impact on online learning. However, both real and sham versions of tDCS and NFB resulted in notable improvements in short-term offline learning. The difference in improvement between NFB and tDCS, as well as between real and sham interventions, was not statistically significant, suggesting that the placebo effect may play a significant role in enhancing short-term offline learning. For long-term offline learning, both brain stimulation methods, particularly tDCS, showed positive effects, although the placebo effect also appeared to contribute.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbr.2024.115263 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!