Discovering potential asthma therapeutics targeting hematopoietic prostaglandin D2 synthase: An integrated computational approach.

Arch Biochem Biophys

Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia. Electronic address:

Published: November 2024

Allergic asthma, a chronic inflammatory illness that affects millions worldwide, has serious economic and health consequences. Despite advances in therapy, contemporary treatments have poor efficacy and negative effects. This study investigates hematopoietic prostaglandin D2 synthase (HPGDS) as a potential target for novel asthma therapies. Targeting HPGDS may provide innovative treatment methods. A library of phytochemicals was used to find putative HPGDS inhibitors by structure-based and ligand-based virtual screening. Among the 2295 compounds screened, four compounds (ZINC208828240, ZINC95627530, ZINC14727536, and ZINC14711790) demonstrated strong binding affinities of -10.4, -10.3, -9.2, -9.1 kcal/mol respectively with key residues, suggesting their potential as a highly effective HPGDS inhibitor. Molecular dynamics (MD) simulations and Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) computations were further performed to evaluate the stability and binding affinity of the complexes. MD simulations and MMPBSA confirmed that compound ZINC14711790 showed high stability and binding affinity (binding energy -31.52 kcal/mol) than other compounds, including HQL-79, suggesting that this compound might be used as promising inhibitors to treat asthma. RMSD and RMSF analysis also revealed that ZINC14711790 exhibited strong dynamic stability. The findings of this study show the efficacy of ZINC14711790 as HPGDS inhibitors with high binding affinity, dynamic stability, and appropriate ADMET profile.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2024.110157DOI Listing

Publication Analysis

Top Keywords

binding affinity
12
hematopoietic prostaglandin
8
prostaglandin synthase
8
hpgds inhibitors
8
stability binding
8
dynamic stability
8
hpgds
5
binding
5
discovering potential
4
asthma
4

Similar Publications

Arrhythmogenic calmodulin variants D131E and Q135P disrupt interaction with the L-type voltage-gated Ca channel (Ca1.2) and reduce Ca-dependent inactivation.

Acta Physiol (Oxf)

February 2025

Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.

Aim: Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship.

View Article and Find Full Text PDF

Resistance to endocrine therapies remains a major clinical hurdle in breast cancer. Mutations to estrogen receptor alpha (ERα) arise after continued therapeutic pressure. Next generation selective estrogen receptor modulators and degraders/downregulators (SERMs and SERDs) show clinical efficacy, but responses are often non-durable.

View Article and Find Full Text PDF

Dengue Virus Fusion Peptide Promotes Hemifusion Formation by Disordering the Interfacial Region of the Membrane.

J Membr Biol

January 2025

School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 109, India.

Membrane fusion is the first step in the infection process of the enveloped viruses. Enveloped viruses fuse either at the cell surface or enter the cell through endocytosis and transfer their internal genetic materials by fusing with the endosomal membrane at acidic pH. In this work, we have evaluated the effect of the Dengue virus fusion peptide (DENV FP) on the polyethylene glycol (PEG)-mediated lipid mixing of vesicles (hemifusion formation) at pH 5 and pH 7.

View Article and Find Full Text PDF

This study investigates a nanoparticle-based doxycycline (DOX) delivery system targeting cervical cancer cells via the CD44 receptor. Molecular docking revealed a strong binding affinity between hyaluronic acid (HA) and CD44 (binding energy: -7.2 kJ/mol).

View Article and Find Full Text PDF

Tumor-derived extracellular vesicles (T-EVs) PD-L1 are an important biomarker for predicting immunotherapy response and can help us understand the mechanism of resistance to immunotherapy. However, this is due to the interference from a large proportion of nontumor-derived EVs. It is still challenging to accurately analyze T-EVs PD-L1 in complex human fluids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!