Multi-pollutant removal dynamics by aquatic plants in monoculture or mixed communities.

Environ Res

Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK. Electronic address:

Published: December 2024

Much of our knowledge about the phytoremediation potential of floating treatment wetlands (FTWs) comes from studies focusing on the removal of single pollutants, often by a single plant species. Here, we quantify the potential of FTWs planted with varying proportions of the emergent monocots Typha latifolia, Glyceria maxima, and Phragmites australis to simultaneously remove a suite of eleven nutrient/metalloid pollutants. Pollutants most readily removed from water included total inorganic nitrogen (TIN), K and Mn, whilst P, Zn and Cu showed a moderate removal efficiency, and Mg, Ca, Na, Cr, and Fe were poorly removed. Root length within a FTW was correlated with lower concentrations of Ca, Mg, K, P, and Zn remaining in the water, whilst plant uptake and tissue sequestration was more important for reducing concentrations of Mn, TIN, P, and Fe. The effect of community composition over time was greatest for the removal of Zn, with FTWs containing T. latifolia having the strongest effect; community type was less important for the removal of TIN, Mg, K, and Na. Plant tissue sequestration was important for reducing concentrations of Mn, TIN, P and Fe in the water, with median uptake values all greater than 12.5%. Importantly, the removal of some pollutants (e.g., Cu) increased with retention time. Therefore, depending on the management objective, FTWs generally perform better where and when residence times are longer e.g., in ponds or streams under low flow, and assembling FTW communities with varying traits and associated removal mechanisms can allow several pollutants to be remediated at once.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.120041DOI Listing

Publication Analysis

Top Keywords

tissue sequestration
8
sequestration reducing
8
reducing concentrations
8
concentrations tin
8
removal
6
pollutants
5
multi-pollutant removal
4
removal dynamics
4
dynamics aquatic
4
aquatic plants
4

Similar Publications

The periderm provides a protective barrier in many seed plant species. The development of the suberized phellem, which forms the outermost layer of this important tissue, has become a trait of interest for enhancing both plant resilience to stresses and plant-mediated CO sequestration in soils. Despite its importance, very few genes driving phellem development are known.

View Article and Find Full Text PDF

Epithelial cells can become polyploid upon tissue injury, but mechanosensitive cues that trigger this state are poorly understood. Using an Madin Darby Canine Kidney (MDCK) cell knock-out/reconstitution system, we show that α-catenin mutants that alter force-sensitive binding to F-actin or middle (M)-domain promote cytokinesis failure and binucleation, particularly near epithelial wound-fronts. We identified Leucine Zipper Tumor Suppressor 2 (LZTS2), a factor previously implicated in abscission, as a conformation sensitive proximity partner of α-catenin.

View Article and Find Full Text PDF

Pulmonary sequestration is a rare congenital anomaly, characterized by aberrant lung tissue supplied by an aberrant systemic artery or arteries coursing within the inferior pulmonary ligament. The intralobar variety is the most frequent form. Clinical presentation may include recurrent haemoptysis and infection.

View Article and Find Full Text PDF
Article Synopsis
  • Pulmonary sequestration is a rare congenital lung issue where abnormal lung tissue is supplied by a wrong artery, most commonly seen in the intralobar form.
  • Patients often experience symptoms like recurrent coughing up blood and lung infections.
  • Surgical treatment involves carefully removing the affected tissue while protecting healthy lung, with techniques to minimize the risk of bleeding from the abnormal arteries during the procedure.
View Article and Find Full Text PDF

Identification of lesion demarcation during thoracoscopic anatomical lesion resection is fundamental for treating children with congenital lung malformation. Existing lesion demarcations do not always meet the needs of clinical practice. This study aimed to explore the safety and efficacy of near-infrared fluorescence imaging with nebulized inhalation of indocyanine green for thoracoscopic anatomical lesion resection in children with congenital lung malformation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!