Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The pressing need to mitigate climate change and drastically reduce environmental pollution and loss of biodiversity has precipitated a so-called energy transition aimed at the decarbonization of energy and defossilization of the chemical industry. The goal is a carbon-neutral (net-zero) society driven by sustainable energy and a circular bio-based economy relying on renewable biomass as the raw material. It will involve the use of green carbon, defined as carbon derived from terrestrial or aquatic biomass or organic waste, including carbon dioxide and methane emissions. It will also necessitate the accompanying use of green hydrogen that is generated by electrolysis of water using a sustainable source of energy, e.g. solar, wind or nuclear. Ninety per cent of the industrial chemicals produced in oil refineries are industrial monomers that constitute the precursors of a large variety of polymers, many of which are plastics. Primary examples of the latter are polyolefins such as polyethylene, polypropylene, polyvinyl chloride and polystyrene. Polyolefins are extremely difficult to recycle back to the olefin monomers and discarded polyolefin plastics generally end up as the plastic waste that is responsible for the degradation of our natural habitat. By contrast, waste biomass, such as the lignocellulose contained in forestry residues and agricultural waste, constitutes a renewable feedstock for the sustainable production of industrial monomers and the corresponding polymers. The latter could be the same polyolefins that are currently produced in oil refineries but a more attractive long-term alternative is to produce polyesters and polyamides that can be recycled back to the original monomers: a paradigm shift to a truly bio-based circular economy on the road to a net-zero chemical industry. This article is part of the discussion meeting issue 'Green carbon for the chemical industry of the future'.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rsta.2023.0259 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!