Natural gas leaks alter both the spectral reflectance and the structure of surface vegetation, which can be used to indirectly monitor microleakages in gas storage facilities. However, existing methods predominantly focus on the spectral rather than structural response of stressed vegetation, and it is not clear whether structure characteristic can be used to identify natural gas stressed vegetation. In this study, the utility of mobile LiDAR in detecting vegetation structure changes due to natural gas stress was demonstrated by analyzing LiDAR data from a field experiment with bean and grass plants in their growing phase. A method utilizing the Jeffries-Matusita distance criterion constrained K-means clustering (JCKC) algorithm was proposed, which comprises three main steps: First, response of vegetation structure characteristic to natural gas stress was quantitatively analyzed at plot and pixel scales using LiDAR data. Second, the optimal set of structure characteristic parameters indicating natural gas stressed vegetation was determined using hierarchical clustering algorithm. Third, the reduced LiDAR data was clustered using K-means algorithm, and the clusters were classified under constraint of Jeffries-Matusita distance criterion to identify stressed vegetation. The results indicated natural gas stress significantly changes vegetation structure (p = 0.05), decreasing parameters like height, projected leaf area, canopy relief ratio, coefficient of variation of vegetation height, and entropy, while increasing homogeneity, contrast, and dissimilarity. The set of structure characteristic parameters based on height, homogeneity, and contrast can stably indicate natural gas stress, with Jeffries-Matusita distance values for comparing healthy and stressed vegetation samples exceeding 1.8. The proposed model achieved pixel-level identification accuracies of 98.95% for bean and 96.22% for grass, with average localization accuracies of 0.15 m and 0.12 m, respectively. This study demonstrates the potential of vegetation's structure characteristic in reflecting response to natural gas stress and monitoring natural gas storage microleakage in vegetated areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.122539 | DOI Listing |
Mikrochim Acta
January 2025
Hebei Lansheng Bio-Tech Co, Ltd, Shijiazhuang, 052263, P. R. China.
A novel fluorescence sensing nanoplatform (CDs/AuNCs@ZIF-8) encapsulating carbon dots (CDs) and gold nanoclusters (AuNCs) within a zeolitic imidazolate framework-8 (ZIF-8) was developed for ratiometric detection of formaldehyde (FA) in the medium of hydroxylamine hydrochloride (NHOH·HCl). The nanoplatform exhibited pink fluorescence due to the aggregation-induced emission (AIE) effect of AuNCs and the internal filtration effect (IFE) between AuNCs and CDs. Upon reaction between NHOH·HCl and FA, a Schiff base formed via aldehyde-diamine condensation, releasing hydrochloric acid.
View Article and Find Full Text PDFEnviron Sci Technol Lett
January 2025
Energy Emissions Modeling and Data Lab (EEMDL), The University of Texas at Austin, Austin Texas 78712, United States.
Addressing methane emissions across the liquefied natural gas (LNG) supply chain is key to reducing climate impacts of LNG. Actions to address methane emissions have emphasized the importance of the use of measurement-informed emissions inventories given the systematic underestimation in official greenhouse gas (GHG) emission inventories. Despite significant progress in field measurements of GHG emissions across the natural gas supply chain, no detailed measurements at US liquefaction terminals are publicly available.
View Article and Find Full Text PDFACS Omega
January 2025
Faculty of Physics and Technology, Al-Farabi Kazakh National University, Al-Farabi ave. 71/23, 050040 Almaty, Kazakhstan.
This study investigates the formation of carbon dioxide clathrate hydrates under conditions simulating interstellar environments, a process of significant astrophysical and industrial relevance. Clathrate hydrates, where gas molecules are trapped within water ice cages, play an essential role in both carbon sequestration strategies and understanding of the behavior of ices in space. We employed a combination of Fourier Transform Infrared (FTIR) spectroscopy, mass spectrometry, temperature-programmed desorption (TPD), and Density Functional Theory (DFT) calculations to explore thin films of HO:CO ice mixtures with varying CO concentrations (5-75%) prepared by vapor deposition at temperatures ranging between 11 and 180 K.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Metallurgy & Materials Engineering, Mehran University of Engineering and Technology, Jamshoro, Sindh 76062, Pakistan.
For optimizing the drilling efficiency, nanoparticles (NPs) specifically nanometal oxides have been used in water-based drilling fluids (WBDF). Nano metal oxides improve the rheological and filtration characteristics of the WBDF. However, dispersion instability among pristine nano metals shrinks the performance of the nanometal oxides due to high surface energy.
View Article and Find Full Text PDFEnviron Evid
January 2025
Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 750 07, Uppsala, Sweden.
Background: To align with climate goals, greenhouse gas (GHG) emissions from agriculture must be reduced significantly. Cultivated peatlands are an important source of such emissions. One proposed measure is to convert arable fields on peatlands to grassland, as the Intergovernmental Panel on Climate Change (IPCC) default emission factors (EF) for organic soils are lower from grasslands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!