Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The rapid, precise identification and quantification of specific biomarkers, toxins, or pathogens is currently a key strategy for achieving more efficient diagnoses. Herein a dopamine-biotin monomer was synthetized and oxidized in the presence of hexamethylenediamine, to obtain adhesive coatings based on polydopamine-biotin (PDA-BT) on different materials to be used in targeted molecular therapy. Insight into the structure of the PDA-BT coating was obtained by solid-state C NMR spectroscopy acquired, for the first time, directly onto the coating, deposited on alumina spheres. The receptor binding capacity of the PDA-BT coating toward 4-hydroxyazobenzene-2-carboxylic acid/Avidin complex was verified by means of UV-vis spectroscopy. Different deposition cycles of avidin onto the PDA-BT coating by layer-by-layer assembly showed that the film retains its receptor binding capacity for at least eight consecutive cycles. Finally, the feasibility of PDA-BT coating to recognize cell lines with different grade of overexpression of biotin receptors (BR) was investigated by tumor cell capture experiments by using MCF-7 (BR+) and HL-60 (BR-) cell lines. The results show that the developed system can selectively capture MCF-7 cells indicating that it could represent a first approach for the development of future more sophisticated biosensors easily accessible, low cost and recyclable with the dual and rapid detection of both proteins and cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.09.145 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!