PNIPAAm-based temperature responsive ionic conductive hydrogels for flexible strain and temperature sensing.

J Colloid Interface Sci

School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Ministry of Education Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China. Electronic address:

Published: January 2025

Conductive hydrogels have received much attention in the field of flexible wearable sensors due to their outstanding flexibility, conductivity, sensitivity and excellent compatibility. However, most conductive hydrogels mainly focus on strain sensors to detect human motion and lack other features such as temperature response. Herein, we prepared a strain and temperature dual responsive ionic conductive hydrogel (PPPNV) with an interpenetrating network structure by introducing a covalent crosslinked network of N-isopropylacrylamide (NIPAAm) and 1-vinyl-3-butylimidazolium bromide (VBIMBr) into the skeleton of the hydrogel composed of polyvinylalcohol (PVA) and polyvinylpyrrolidone (PVP). The PPPNV hydrogel exhibited excellent anti-freezing properties (-37.34 °C) and water retention with high stretchability (∼930 %) and excellent adhesion. As a wearable strain sensor, the PPPNV hydrogel has good responsiveness and stability to a wide range of deformations and exhibits high strain sensitivity (GF=2.6) as well as fast response time. It can detect large and subtle body movements with good signal stability. As wearable temperature sensors, PPPNV hydrogels can detect human physiological signals and respond to temperature changes, and the volumetric phase transition temperature (VPTT) can be easily controlled by adjusting the molar ratio of NIPAAm to VBIMBr. In addition, a bilayer temperature-sensitive hydrogel was prepared with the temperature responsive hydrogel by two-step synthesis, which shows great promising applications in temperature actuators.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.09.131DOI Listing

Publication Analysis

Top Keywords

conductive hydrogels
12
temperature responsive
8
responsive ionic
8
ionic conductive
8
temperature
8
strain temperature
8
detect human
8
pppnv hydrogel
8
hydrogel
6
strain
5

Similar Publications

Preparation of pH-Responsive Tanshinone IIA-Loaded Calcium Alginate Nanoparticles and Their Anticancer Mechanisms.

Pharmaceutics

January 2025

State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, College of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China.

Tanshinone IIA (Tan IIA) is a lipophilic active constituent derived from the rhizomes and roots of (Danshen), a common Chinese medicinal herb. However, clinical applications of Tan IIA are limited due to its poor solubility in water. : To overcome this limitation, we developed a calcium alginate hydrogel (CA) as a hydrophilic carrier for Tan IIA, which significantly improved its solubility.

View Article and Find Full Text PDF

Hydrogels of Poly(2-hydroxyethyl methacrylate) and Poly(N,N-dimethylacrylamide) Interpenetrating Polymer Networks as Dermal Delivery Systems for Dexamethasone.

Pharmaceutics

January 2025

Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria.

: This study is an attempt to reveal the potential of two types of interpenetrating polymer network (IPN) hydrogels based on poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(N,N-dimethylacrylamide) (PDMAM). These IPNs were evaluated for their potential for dermal delivery of the hydrophobic drug dexamethasone (DEX). : The two types of IPNs were analyzed for their rheological behavior, swelling characteristics, and drug-loading capacity with DEX.

View Article and Find Full Text PDF

The trace detection of pyocyanin (PCN) is crucial for infection control, and electrochemical sensing technology holds strong potential for application in this field. A pivotal challenge in utilizing carbon materials within electrochemical sensors lies in constructing carbon-based films with robust adhesion. To address this issue, a novel composite hydrogel consisting of multi-walled carbon nanotubes/polyvinyl alcohol/phosphotungstic acid (MWCNTs/PVA/PTA) was proposed in this study, resulting in the preparation of a highly sensitive and stable PCN electrochemical sensor.

View Article and Find Full Text PDF

Agomelatine (AGM) is an effective antidepressant with low oral bioavailability due to intensive hepatic metabolism. Transdermal administration of agomelatine may increase its bioavailability and reduce the doses necessary for therapeutic effects. However, transdermal delivery requires crossing the barrier.

View Article and Find Full Text PDF

Marine polysaccharide hydrogels have emerged as an innovative platform for regulating the in vivo release of natural bioactive compounds for medical purposes. These hydrogels, which have exceptional biocompatibility, biodegradability, and high water absorption capacity, create effective matrices for encapsulating different bioactive molecules. In addition, by modifying the physical and chemical properties of marine hydrogels, including cross-linking density, swelling behavior, and response to external stimuli like pH, temperature, or ionic strength, the release profile of encapsulated bioactive compounds is strictly regulated, thus maximizing therapeutic efficacy and minimizing side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!