Robust and rapid detection of apoptosis in cells is crucially needed for diagnostics, drug discovery, studying pathogenic mechanisms and tracking patient response to medical interventions and treatments. Traditionally, the methods employed to detect apoptosis rely on complex instrumentation like flow cytometers and fluorescence microscopes, which are both expensive and complex-to-operate except in centralized laboratories with trained labor. In this work, we introduce a microfluidic device that can screen cells in a suspension for apoptosis markers and report the assays results as electronic data. Specifically, our device identifies apoptotic cells by detecting externalized phosphatidylserine on a cell membrane - a well-established biomarker that is also targeted by fluorophore-based labeling in conventional assays. In our device, apoptotic cells are discriminated from others through biochemical capture followed by transduction of individual capture events into electrical signals via integrated electrical sensors. The developed technology was tested on simulated samples containing controlled amounts of cells with artificially-induced apoptosis and validated by benchmarking against conventional flow cytometry. Combining sample manipulation and electronic detection on a disposable microfluidic chip, our cell apoptosis assay is amenable to be implemented in a variety of settings and therefore has the potential to create new opportunities for cell-based diagnostics and therapeutics and contribute to improved healthcare outcomes on a large scale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2024.116750 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!