Microplastic pollution in tropical coral reef ecosystems from the coastal South China Sea and their impacts on corals in situ.

J Hazard Mater

Yazhou Bay Innovation Institute/Key Laboratory for Coastal Marine Eco-environment process and Carbon Sink of Hainan Province/Modern Marine Ranching Engineering Research Center of Hainan/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572022, China. Electronic address:

Published: December 2024

Coral reefs possess extremely high ecological value in tropical and subtropical waters worldwide. Microplastics as emerging and pervasive pollutants pose a great threat to the health of coral ecosystems. However, in situ studies on microplastics pollution and its impacts in coral ecosystems globally are limited. The occurrence characteristics of microplastics in the environment mediums and reef-dwelling organisms were investigated in coral reef areas from the southern Hainan Island, and the impacts of microplastics on corals in situ were evaluated in this study. Average microplastics abundance was 9.48 items L in seawater, 190.00 items kg in sediment, 0.36 items g in coral, 1.50 items g in shellfish, 0.48 items g in fish gill, and 1.71 items g in fish gastrointestinal tract. The prevalent microplastics in the above samples were characterized as being less than 1000 µm in size, fibrous, and transparent, with predominant polymer types as polyethylene terephthalate, polypropylene, polyethylene, and rayon. The microplastic enrichment capacity of different corals varied (Pocillopora > Acropora > Sinularia). Notably, microplastics were more abundant on the surface of corals compared to their interiors, with distinct characteristics observed, including larger-sized (>500 µm) and fiber-shaped polyethylene terephthalate microplastics on the surface and smaller-sized (20-200 µm) fragmented polyethylene microplastics within coral interiors. Furthermore, the investigation showed species-specific impacts of microplastics on corals in situ, including photosynthetic activity of photosymbionts and antioxidant and immune activities of corals. Furthermore, the ecological risks of microplastics were minor across most environmental media in the studied areas, with exceptions in the bottom seawater and surface sediment of YLW, which exhibited extreme and medium risk levels, respectively. Coral risk levels were generally medium, except for dangerous levels in DDH and high levels in LHT. The potential sources of microplastics in the marginal reefs of southern Hainan Island were primarily tourism, residential, and fishing activities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.135898DOI Listing

Publication Analysis

Top Keywords

corals situ
12
microplastics
12
coral
8
coral reef
8
coral ecosystems
8
southern hainan
8
hainan island
8
impacts microplastics
8
microplastics corals
8
items fish
8

Similar Publications

Bioinspired bicontinuous adhesive hydrogel for wearable strain sensor with high sensitivity and a wide working range.

J Colloid Interface Sci

January 2025

Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094 China. Electronic address:

Conductive hydrogel strain sensors demonstrate extensive potential in artificial robotics, human-computer interaction, and health monitoring, owing to their excellent flexibility and biocompatibility. Wearable strain sensors for real-time monitoring of human activities require hydrogels with self-adhesion, desirable sensitivity, and wide working range. However, balancing the high sensitivity and a wide working range remains a challenge.

View Article and Find Full Text PDF

Tetrameric PilZ protein stabilizes stator ring in complex flagellar motor and is required for motility in .

Proc Natl Acad Sci U S A

January 2025

Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.

Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of .

View Article and Find Full Text PDF

As marine heatwaves and mass coral bleaching events rise in frequency and severity, there is an increasing need for high-resolution satellite products that accurately predict reef thermal environments over large spatio-temporal scales. Deciding which global sea surface temperature (SST) dataset to use for research or management depends in part on the desired spatial resolution. Here, we evaluate two SST datasets - the lower-resolution CoralTemp v3.

View Article and Find Full Text PDF

Developing efficient and cost-effective rare earth element-based electrocatalysts for water splitting remains a significant challenge. To address this, interface engineering and charge modulation strategies were employed to create a three-dimensional coral-like CeF/MoO heterostructure electrocatalyst, grown in situ on the multistage porous channels of carbonized sugarcane fiber (CSF). Integrating abundant CeF/MoO heterostructure interfaces and numerous oxygen vacancy defects significantly enhanced the catalyst's active sites and molecular activation capabilities.

View Article and Find Full Text PDF

The neuropeptide oxytocin (OXT) and its receptor (OXTR) have been shown to play an important role in glucose metabolism, and pancreatic islets express this ligand and receptor. In the current study, OXTR expression was identified in α-, β-, and δ-cells of the pancreatic islet by RNA hybridization, and OXT protein expression was observed only in β-cells. In order to examine the contribution of islet OXT/OXTR in glycemic control and islet β-cell heath, we developed a β-cell specific OXTR knock-out (β-KO) mouse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!