Microbial dehalogenation, using obligate and facultative organohalide-respiring bacteria (OHRB), has been widely used to remediate halohydrocarbon-polluted sites. Owing to the scarcity of OHRB, and poor efficiency in H-mediating interspecies electron transfer, microbial dehalogenation relying on OHRB is easily disturbed by Fe(III), sulfate, and nitrate as electron competitors. In the present study, pyrogenic carbon, featuring electron snorkeling, was introduced into the process of microbial dehalogenation, which facilitated the electron transfer from electro-active microbes to halohydrocarbon, then invigorating dehalogenation. As a consequence, fine dehalogenation of trichloroethene (TCE, as representative halohydrocarbon) was obtained, expressed as the nearly complete diminishment of 150 µmol L TCE and the sequestration of high contents of ethene (72.2-122.3 µmol L within 80 d). Such fine dehalogenation was ascribed to the synergy between pyrogenic carbon and electro-active microbes. Multiple microbes in mixed cultures, including Clostridium sp., Sporanaerobacter, Sedimentibacter, Paraclostridium, and Tissierella, stimulated TCE dehalogenation by providing electrons to pyrogenic carbon. Redox moieties on pyrogenic carbon enabled it to snorkel electrons, which facilitated the electron transfer from electro-active microbes to TCE, consequently invigorating TCE dehalogenation. Such microbial dehalogenation free of OHRB demonstrates the effectiveness of a novel strategy for remediating halohydrocarbon-polluted environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.135903DOI Listing

Publication Analysis

Top Keywords

pyrogenic carbon
20
microbial dehalogenation
16
tce dehalogenation
12
electron transfer
12
electro-active microbes
12
dehalogenation
10
facilitated electron
8
transfer electro-active
8
fine dehalogenation
8
tce
6

Similar Publications

Gases and dissolved black carbon (DBC) formed during pyrolysis of nitrogen-rich feedstock would affect atmospheric and aquatic environments. Yet, the mechanisms driving biomass gas evolution and DBC formation are poorly understood. Using thermogravimetric-Fourier transform infrared spectrometry and two-dimensional correlation spectroscopy, we correlated the temperature-dependent primary noncondensable gas release sequence (HO → CO → HCN, NH → CH → CO) with specific defunctionalization stages in the order: dehydration, decarboxylation, denitrogenation, demethylation, and decarbonylation.

View Article and Find Full Text PDF

Percutaneous Coronary Intervention (PCI) is a treatment method that involves reopening narrowed arteries with a balloon catheter that delivers a cylindrical, mesh-shaped implant device to the site of the stenosis. Currently, by applying a coating to a bare metal stent (BMS) surface to improve biocompatibility, the main risks after PCI, such as restenosis and thrombosis, are reduced while maintaining the basic requirements for the mechanical behavior of the stent itself. In this work, for the first time, the development and optimization process of the spatial structure of the Co-Cr stent (L-605) with a graphene-based coating using cold-wall chemical vapor deposition (CW-CVD) to ensure uniform coverage of the implant was attempted.

View Article and Find Full Text PDF

Peatlands store one-third of the world's soil organic carbon. Globally increased fires altered peat soil organic matter chemistry, yet the redox property and molecular dynamics of peat-dissolved organic matter (PDOM) during fires remain poorly characterized, limiting our understanding of postfire biogeochemical processes. Clarifying these dynamic changes is essential for effective peatland fire management.

View Article and Find Full Text PDF

Understanding the causes of past atmospheric methane (CH) variability is important for characterizing the relationship between CH, global climate and terrestrial biogeochemical cycling. Ice core records of atmospheric CH contain rapid variations linked to abrupt climate changes of the last glacial period known as Dansgaard-Oeschger (DO) events and Heinrich events (HE). The drivers of these CH variations remain unknown but can be constrained with ice core measurements of the stable isotopic composition of atmospheric CH, which is sensitive to the strength of different isotopically distinguishable emission categories (microbial, pyrogenic and geologic).

View Article and Find Full Text PDF

The application of nanocomposites based on polyacrylamide hydrogels as well as silica nanoparticles in various tasks related to the petroleum industry has been rapidly developing in the last 10-15 years. Analysis of the literature has shown that the introduction of nanoparticles into hydrogels significantly increases their structural and mechanical characteristics and improves their thermal stability. Nanocomposites based on hydrogels are used in different technological processes of oil production: for conformance control, water shutoff in production wells, and well killing with loss circulation control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!