Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching, adjusting dielectric/magnetic resonance and promoting electromagnetic (EM) wave absorption, but still exist a significant challenging in regulating local phase evolution. Herein, accordion-shaped Co/CoO@N-doped carbon nanosheets (Co/CoO@NC) with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and low-temperature oxidation process. The results indicate that the surface epitaxial growth of crystal CoO domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components, which are beneficial for optimizing impedance matching and interfacial polarization. Moreover, gradient magnetic heterointerfaces simultaneously realize magnetic coupling, and long-range magnetic diffraction. Specifically, the synthesized Co/CoO@NC absorbents display the strong electromagnetic wave attenuation capability of - 53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz, both are superior to those of single magnetic domains embedded in carbon matrix. This design concept provides us an inspiration in optimizing interfacial polarization, regulating magnetic coupling and promoting electromagnetic wave absorption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416442PMC
http://dx.doi.org/10.1007/s40820-024-01516-zDOI Listing

Publication Analysis

Top Keywords

gradient magnetic
16
magnetic heterointerfaces
16
electromagnetic wave
16
wave absorption
12
low-temperature oxidation
8
phase evolution
8
magnetic
8
optimizing impedance
8
impedance matching
8
promoting electromagnetic
8

Similar Publications

Functional connectivity gradients and neurotransmitter maps among patients with mild cognitive impairment and depression symptoms.

J Psychiatry Neurosci

January 2025

From the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China (X. Liu, Chen, K. Liu, Yan, Wu); the Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou, Zhejiang Province, China (X. Liu, Chen, K. Liu, Yan); the Jinhua Municipal Central Hospital, Jinhua, Zhejiang 321000, China (Chen); the Hebei General Hospital, Shijiazhuang, Hebei 050050, China (Cheng); the Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China (Wei, Hou, Li, Guo); the Zhoushan Second People's Hospital, Zhoushan, Zhejiang 316000, China (Guo)

Background: Both depressive symptoms and neurotransmitter changes affect the characteristics of functional brain networks in clinical patients. We sought to explore how brain functional grading is organized among patients with mild cognitive impairment and depressive symptoms (D-MCI) and whether changes in brain organization are related to neurotransmitter distribution.

Methods: Using 3 T magnetic resonance imaging (MRI) we acquired functional MRI (fMRI) data from patients with D-MCI, patients with mild cognitive impairment without depression (nD-MCI), and healthy controls.

View Article and Find Full Text PDF

Enhancing the performance of 5ph-IPMSM control plays a crucial role in advancing various innovative applications such as electric vehicles. This paper proposes a new reinforcement learning (RL) control algorithm based twin-delayed deep deterministic policy gradient (TD3) algorithm to tune two cascaded PI controllers in a five-phase interior permanent magnet synchronous motor (5ph-IPMSM) drive system based model predictive control (MPC). The main purpose of the control methodology is to optimize the 5ph-IPMSM speed response either in constant torque region or constant power region.

View Article and Find Full Text PDF

Background: White matter hyperintensities (WMHs) are increasingly recognized for their role in cognitive decline and the progression of neurodegenerative conditions including Alzheimer's disease (AD). Despite advances in imaging technologies, the exact contribution of WMHs to disease processes remains a subject of ongoing research. This study aims to apply machine learning approaches to determine critical features of AD-related neuropathologies in vivo.

View Article and Find Full Text PDF

A new selective and sensitive high-performance liquid chromatography (HPLC) method was developed for the quantification of potential impurities in fluoxetine hydrochloride. Chromatographic separation was achieved on an end-capped octadecylsilyl silica gel (Gemini-C18 150 mm × 4.6 mm, 3.

View Article and Find Full Text PDF

Passive and active suppression of transduced noise in silicon spin qubits.

Nat Commun

January 2025

Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, Korea.

Addressing and mitigating decoherence sources plays an essential role in the development of a scalable quantum computing system, which requires low gate errors to be consistently maintained throughout the circuit execution. While nuclear spin-free materials, such as isotopically purified silicon, exhibit intrinsically promising coherence properties for electron spin qubits, the omnipresent charge noise, when converted to magnetic noise under a strong magnetic field gradient, often hinders stable qubit operation within a time frame comparable to the data acquisition time. Here, we demonstrate both open- and closed-loop suppression techniques for the transduced noise in silicon spin qubits, resulting in a more than two-fold (ten-fold) improvement of the inhomogeneous coherence time (Rabi oscillation quality) that leads to a single-qubit gate fidelity of over 99.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!