A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization and function of particulate organic matter: Evidence from lakes undergoing ecological restoration. | LitMetric

Characterization and function of particulate organic matter: Evidence from lakes undergoing ecological restoration.

J Environ Sci (China)

School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Environmental Development Center of Ministry of Ecology and Environment, Beijing 100029, China.

Published: April 2025

Particulate organic matter (POM) plays a crucial role in the organic composition of lakes; however, its characteristics remain poorly understood. This study aimed to characterize the structure and composition of POM in Lake Baiyangdian using many kinds of techniques and investigate the effects of different extracted forms of POM on water quality. The suspended particulate matter in the lake had complex compositions, with its components primarily derived from aquatic plants and their detritus. The organic matter content of the suspended particulate matter was relatively high (organic carbon content 27.29-145.94 g/kg) for the sum of three extractable states (water-extracted organic matter [WEOM], humic acid, and fulvic acid) and one stable bound state (humin). Spatial distribution analysis revealed that the POM content in the water increased from west to east, which was consistent with the water flow pattern influenced by the Baiyangdian water diversion project. Fluorescence spectroscopy analysis of the WEOM showed three prominent peaks with excitation/emission wavelengths similar to those of dissolved organic matter peaks. These peaks were potentially initial products of POM conversion into dissolved organic matter. Furthermore, the intensity of the WEOM fluorescence peak (total fluorescence peak intensity) was negatively correlated with the inorganic nitrogen concentration in water (p < 0.01), while the intensity of the HA fluorescence peak showed a positive correlation with the inorganic nitrogen concentration (p < 0.01). This suggested that exogenous organic matter inputs led to the diffusion of alkaline dissolved nitrogen from sediment into water, while degradation processes of aquatic plant debris contributed to the decrease in inorganic nitrogen concentrations in the water column. These findings enhance our understanding of POM characteristics in shallow lakes and the role of POM in shallow lake ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2024.03.020DOI Listing

Publication Analysis

Top Keywords

organic matter
28
fluorescence peak
12
inorganic nitrogen
12
organic
9
matter
9
particulate organic
8
suspended particulate
8
particulate matter
8
dissolved organic
8
nitrogen concentration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!