Ethnopharmacological Relevance: Chronic pancreatitis (CP), a syndrome characterized by inflammatory fibrosis, can impair both the internal and external secretory functions of the pancreas. The global incidence of this disease is gradually increasing. However, the exact pathogenesis remains unclear, resulting in a lack of targeted clinical therapies. According to the principles of traditional Chinese medicine, CP can be attributed to Shaoyang and Yangming syndromes, which manifest as abdominal pain and hypochondriac distension. Dachaihu Decoction (DCHD) is a classic formula from the "Treatise on Febrile and Miscellaneous Disease." It is frequently prescribed for conditions associated with combined Shaoyang and Yangming syndromes. However, the specific mechanisms by which DCHD prevents and treats CP remain unclear and require further investigation.
Aim Of The Study: Using a holistic methodology, including network pharmacology, molecular docking, transcriptomic profiling, and animal experimentation, we explored the potential therapeutic mechanisms of DCHD in CP.
Materials And Methods: In a mouse model, caerulein was used to induce CP, and DCHD was administered via gastric lavage to assess its therapeutic effect on pancreatic injury caused by caerulein-induced CP. Subsequently, pancreatic tissues were collected for transcriptomic analysis. Screening of DCHD-active ingredient-target pathways for CP treatment was conducted using network pharmacology and further preliminary validation was performed using molecular docking techniques. Additionally, in vivo and in vitro validation was conducted using animal and cells experiments based on the predicted results.
Results: Our findings suggest that DCHD ameliorates pancreatic acinar cell injury, pancreatic inflammation, and fibrosis in mice with CP. Network pharmacology identified 385 potential targets of DCHD associated with CP. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the therapeutic effect of DCHD on CP may be linked to the mitogen-activated protein kinase (MAPK) signaling pathway. Transcriptomic data supported this finding, as it confirmed that DCHD inhibited the pancreatic MAPK signaling pathway in CP. Molecular docking studies further revealed that the top ten active components of DCHD exhibited strong docking activity with key molecules within the MAPK signaling pathway. Finally, animal experiments confirmed that DCHD effectively reduced the phosphorylation of P38, Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) in pancreatic tissues. In addition, the expression of p-P38, p-JNK, and p-ERK was reduced in pancreatic stellate cells and macrophages in the DCHD group. We further treated CP mice, human pancreatic stellate cell line (hPSCs), and macrophage cell line RAW264.7 with the active component baicalin from DCHD, and found that baicalin effectively reduced pancreatic damage in CP. Additionally, the expression of key proteins in the MAPK signaling pathway was significantly decreased in both hPSCs and RAW264.7.
Conclusion: In summary, DCHD plays an important role in the treatment of chronic pancreatitis, and it may become a promising drug against the progression of CP. The role of DCHD in alleviating pancreatic inflammatory cell infiltration and fibrosis may be related to the regulation of the MAPK signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2024.118833 | DOI Listing |
Cell Biochem Biophys
January 2025
Pharmacy Administration Office, The Third Hospital of Nanchang City, Jiangxi Province, Nanchang, Jiangxi, China.
In the contemporary era of drug discovery, herbal treatments have demonstrated an unparalleled ability to produce anticancer drugs. An important part of the therapy of cancer is the use of plants and their by-products via analogues, which alter the tumor microenvironment and several signaling pathways. The objective of the current investigation was to conclude the rate at which the herbal medications quercetin (QT) and sulforaphane (SFN) repressed the growth of breast carcinoma cells in MDA-MB-231 by preventing the ERK/MAPK signaling systems.
View Article and Find Full Text PDFCancer Res Commun
January 2025
Charité, Berlin, Germany.
Telomerase is reactivated by genomic TERT rearrangements in ~30% of diagnosed high-risk neuroblastomas. Dismal patient prognosis results if the RAS/MAPK/ALK signaling transduction network also harbors mutations. We present a liquid biopsy-based monitoring strategy for this particularly vulnerable pediatric patient subgroup, for whom real-time molecular diagnostic tools are limited to date.
View Article and Find Full Text PDFHeliyon
December 2024
Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
Cervical cancer (CC), which ranks among the four most common cancers in women, is a leading cause of both illness and death globally. It's urgent to identify a new biomarker to elucidate the potential mechanisms underlying the progression of CC. Here, we screened the differentially expressed genes (DEGs) in the Cancer Genome Atlas database (TCGA) and selected Chromosome 1 open reading frame 74 (C1orf74) for further investigation.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Medical Rehabilitation, School of Nursing, Jilin University, 965 Xinjiang Street, Chaoyang District, Changchun, 130021, China.
Cervical squamous cell carcinoma (CESC) is a common cancer in women. Despite advancements in early diagnosis through high-risk human papillomavirus (HPV) screening, challenges remain in predicting and treating the disease. Hence, the identification of novel biomarkers for prognosis and therapeutic targets is crucial.
View Article and Find Full Text PDFFront Oncol
December 2024
Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China.
Introduction: Lung adenocarcinoma (LUAD) poses a significant therapeutic challenge, primarily due to delayed diagnosis and the limited efficacy of existing treatments.
Methods: To understand the pathogenesis and identify diagnostic biomarkers for LUAD in the early stage, we investigated differential miRNA expression in 33 stage I LUAD patients between tumor and matched paracancerous tissues by Illumina Sequencing. Target genes of differentially expressed miRNAs were predicted using TargetScan and miRDB databases and further analyzed by GO and KEGG pathway enrichment analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!