Enhanced antibacterial activity of starch-alginate beads by a synergistic effect between Cu and Zn ions with a potential wound dressing application.

Int J Biol Macromol

Instituto de Física del Sur, IFISUR (UNS-CONICET), Avenida Alem 1253, 8000 Bahía Blanca, Argentina; Departamento de Ingeniería Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina. Electronic address:

Published: September 2024

AI Article Synopsis

  • * Hydrogel beads were made using gelation methods, then dried to form cryogels and xerogels, which were examined for their structure and metal distribution; unimetallic beads showed better water absorption.
  • * All types of beads displayed strong antibacterial properties, particularly against E. coli and P. aeruginosa, with bimetallic materials showing improved effectiveness and water absorption, highlighting their potential for exudative wound care.

Article Abstract

The synthesis and characterization of starch/alginate composite beads, crosslinked with Cu, Zn, and Cu:Zn mixtures were investigated, focusing on their potential application in exudative wound dressings. Hydrogel beads were prepared using the external gelation method and then dried via freeze-drying to create cryogels and air-drying to create xerogels. Microstructural characterization was performed using SEM and EDS, showing the typical porous structure with a homogeneous distribution of cations across the beads. Unimetallic beads exhibited higher equilibrium water uptake compared to Cu:Zn bimetallic beads (500 % vs. 300 %). After the swelling study, the total amount of Cu released was significantly below the maximum allowed level as a safeguard against copper toxicity. All beads demonstrated excellent antimicrobial activity against E. coli, S. aureus, and P. aeruginosa. Bimetallic materials, particularly cryogels with equal or greater amount of zinc relative to copper, were particularly effective against P. aeruginosa. Hence, the synthesized bimetallic starch-alginate materials presented superior water absorption capacity and significantly enhanced antibacterial response compared to unimetallic beads, due to the synergistic effect between Cu and Zn ions, making then suitable for use in exudative wound dressings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.135798DOI Listing

Publication Analysis

Top Keywords

enhanced antibacterial
8
beads
8
beads synergistic
8
synergistic ions
8
exudative wound
8
wound dressings
8
unimetallic beads
8
antibacterial activity
4
activity starch-alginate
4
starch-alginate beads
4

Similar Publications

MXene-based composite photocatalysts for efficient degradation of antibiotics in wastewater.

Sci Rep

December 2024

Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.

MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.

View Article and Find Full Text PDF

Over the past decades, bacterial infections resulting from the misuse of antibiotics have garnered significant attention. Among the alternative antibacterial strategies, photodynamic therapy (PDT) has emerged as a promising non-antibiotic approach. However, persistent bacterial biofilms, particularly those composed of gram-negative bacteria with their protective outer membranes, have exhibited remarkable resilience to PDT.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) poses a significant global health challenge, necessitating advanced predictive models to support clinical decision-making. In this study, we explore multi-label classification as a novel approach to predict antibiotic resistance across four clinically relevant bacteria: E. coli, S.

View Article and Find Full Text PDF

Background: Tuberculosis (TB) remains a significant global health issue. Drug-resistant TB and comorbidities exacerbate its burden, influencing treatment outcomes and healthcare utilization. Despite the growing prevalence of TB comorbidities, research often focuses on single comorbidities rather than comorbidity patterns.

View Article and Find Full Text PDF

The ruthenium compounds have been known to have the wide range of potential applications as anticancer, antibacterial and anti-diabetic etc. The ligand substitutions play a vital role in enhancing the pharmacological and biological activities. In the present study, three ruthenium-metal based complexes, designated as (I-III), were synthesized and characterized employing element analysis, FTIR and HNMR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!