Mechanistic study of quercetin in the treatment of hepatocellular carcinoma with diabetes via MEK/ERK pathway.

Int Immunopharmacol

Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China; Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China. Electronic address:

Published: December 2024

AI Article Synopsis

  • Hepatocellular carcinoma (HCC) is worsened by diabetes, increasing the need for new treatment methods, with Traditional Chinese Medicine and quercetin showing promise.
  • The study used bioinformatics and network pharmacology to explore quercetin's effectiveness in HCC patients with diabetes, developing a prognostic model and identifying key genes and targets.
  • Quercetin was found to promote cancer cell death, hinder growth, and reduce metastasis in high-glucose conditions by lowering IL6 levels and blocking the MEK/ERK pathway, suggesting it could help slow HCC progression linked with diabetes.

Article Abstract

Hepatocellular carcinoma (HCC) is a complex disease, further exacerbated by coexisting diabetes. With the rising incidence of HCC-diabetes cases, alternative treatment strategies are urgently needed. Traditional Chinese Medicine (TCM) offers promising options, and quercetin, a bioactive flavonoid, has shown significant antitumor and antidiabetic effects. This study aimed to investigate the efficacy of quercetin in treating HCC with diabetes using bioinformatics and network pharmacology. We constructed a prognostic model for HCC-diabetes using multivariate Cox proportional hazards regression and identified potential targets for quercetin by intersecting quercetin target genes with HCC-diabetes genes. Molecular docking and molecular dynamics simulations screened these potential targets, and in vitro experiments verified quercetin's targets and pathways. The results revealed a prediction model with four essential genes that effectively predict HCC prognosis in diabetic patients. IL6 and MMP9 were identified as potential targets of quercetin through molecular docking and dynamics simulations. In vitro experiments revealed that quercetin promotes apoptosis, inhibits cell proliferation, and suppresses epithelial-mesenchymal transition (EMT) in HepG2 cells under high-glucose conditions by reducing IL6 expression and inhibiting the MEK/ERK pathway. In summary, quercetin may delay the progression of HCC-diabetes by modulating IL6 to inhibit the MEK/ERK signaling pathway, thereby promoting apoptosis and inhibiting the proliferation and EMT of HepG2 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.113194DOI Listing

Publication Analysis

Top Keywords

potential targets
12
quercetin
8
hepatocellular carcinoma
8
mek/erk pathway
8
identified potential
8
targets quercetin
8
molecular docking
8
dynamics simulations
8
vitro experiments
8
emt hepg2
8

Similar Publications

The hydrologic benefits of catchment-scale implementation of stormwater control measures (SCMs) in mitigating the adverse effects of urbanization are well established. Nevertheless, recent studies indicate that the Unified Stormwater Sizing Criteria (USSC) regulations, mandating the combined use of distributed and storage stormwater controls, do not protect channel stability, despite their effectiveness in reducing runoff from impervious surfaces. The USSC are the basis of SCM design in 11 U.

View Article and Find Full Text PDF

Occult collision tumor of the gastroesophageal junction comprising adenocarcinomas with distinct molecular profiles.

Cancer Genet

January 2025

Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Rutgers Cancer Institute, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.

Collision tumors, characterized by the coexistence of two unique neoplasms in close approximation, are rare and pose diagnostic challenges. This is particularly true when the unique neoplasms are of the same histologic type. Here we report such a case where comprehensive tumor profiling by next generation sequencing (NGS) as well as immunohistochemistry revealed two independent adenocarcinomas comprising what was initially diagnosed as a single adenocarcinoma of the gastroesophageal (GEJ) junction.

View Article and Find Full Text PDF

Passive heating in sport: Context specific benefits, detriments, and considerations.

Appl Physiol Nutr Metab

January 2025

Coventry University, Centre for Sport Exercise and Life Sciences, Coventry, Warwickshire, United Kingdom of Great Britain and Northern Ireland;

Exercise and passive heating share some acute physiological responses. These include increases in body temperature, sweat rate, blood flow, heart rate, and redistribution of plasma and blood volume. These responses can vary depending on the heating modality or dose (e.

View Article and Find Full Text PDF

The P2X4 receptor is implicated in various pathological conditions, including neuropathic pain and cancer. This study reports the development of 1,4-naphthodiazepinedione-based P2X4 receptor antagonists aimed at both therapeutic applications and potential use as PET tracers for imaging P2X4 receptor expression in cancer. Structure-activity relationship studies aided by docking studies and molecular dynamics simulations led to a series of compounds with potent P2X4 receptor antagonism, promising inhibition of interleukin-1β release in THP-1 cells and suitability for radiolabeling with fluorine-18.

View Article and Find Full Text PDF

Colorectal cancer (CRC) remains a major global health burden, being one of the most prevalent cancers with high mortality rates. Despite advances in conventional treatment modalities, patients with metastatic CRC often face limited options and poor outcomes. Chimeric antigen receptor-T (CAR-T) cell therapy, initially successful in hematologic malignancies, presents a promising avenue for treating solid tumors, including CRC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!