Swimmers primarily increase their forward velocity through lower limb motion in breaststroke, making the breaststroke kick crucial for optimizing race times. Recent studies have highlighted the generation of vortices around the swimmer's entire body to propel forward during swimming. However, the investigation of vortex generation during breaststroke kicks remains unexplored. This study aimed to reveal the propulsive and braking mechanisms of breaststroke kicks by simulating vortex generation using computational fluid dynamics (CFD). Kinematic data during the breaststroke kick and a three-dimensional digital model were collected to conduct CFD for a male breaststroke swimmer. Vortex generation was determined during one breaststroke kick from the CFD results. Vortices, which potentially induce a decrease in forward velocity, were generated by the swimmer's lower legs and feet during the recovery phase. The swimmer generated vortices on the dorsal side of the feet and the posterior and lateral sides of the lower legs to increase the forward velocity during the out-sweep phase. The swimmer generated vortices on the lateral sides of the thighs and lower legs and the dorsal and lateral sides of the feet during the in-sweep phase to maintain forward velocity. Moreover, vortices generated from the out-sweep to the in-sweep merged and were shed backward relative to the swimming direction after the in-sweep phase. This study is the first to reveal the propulsive and braking mechanisms of breaststroke kicks by analyzing the vortex generation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2024.112329DOI Listing

Publication Analysis

Top Keywords

vortex generation
20
breaststroke kick
16
forward velocity
16
propulsive braking
12
braking mechanisms
12
mechanisms breaststroke
12
breaststroke kicks
12
lower legs
12
lateral sides
12
breaststroke
10

Similar Publications

Optical vortex beams carrying orbit angular momentum have attracted significant attention recently. Perfect vortex beams, characterized by their topological charge-independent intensity profile, have important applications in enhancing communication capacity and optimizing particle manipulation. In this paper, metal-insulator-metal copper-coin type reflective metasurfaces are proposed to generate perfect composite vortex beams in X-band.

View Article and Find Full Text PDF

Vortex beams are currently drawing a great deal of interest, from fundamental research to several promising applications. While their generation in bulky optical devices limits their use in integrated complex systems, metasurfaces have recently proven successful in creating optical vortices, especially in the linear regime. In the nonlinear domain, of strategic importance for the future of classical and quantum information, to date orbital angular momentum has only been created in qualitative ways, without discussing discrepancies between design and experimental results.

View Article and Find Full Text PDF

Unlabelled: Remote polar regions offer unique opportunities and significant challenges for antimicrobial resistance research in a near-pristine environment. While core microbiology techniques continue to have an important role in supporting environmental research, the severe cold climate presents considerable challenges to laboratory research. We explore adaptations required for core bacteriology investigations in polar regions on an unsupported remote expedition c.

View Article and Find Full Text PDF

Dirac-vortex cavities have single-mode emitting, scalable mode areas, arbitrary mode degeneracies, and vector-beam vertical emission, which attract more and more researchers' attention. Here, we demonstrate the single-mode of two-dimensional transverse magnetic (TM) Dirac-vortex topological cavity modes that are not only generally available for high power topological surface-emitting lasers (TCSEL) but also are one of the excellent candidates for refractive index sensors. The principle for winding number is studied, and the scaling laws are shown with cavity mode diameters.

View Article and Find Full Text PDF

Hovering hawkmoths exploit unsteady circulation to produce aerodynamic force.

Biol Lett

January 2025

School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China.

This study employs an integrated approach, combining three-dimensional flow visualization and two-dimensional flow measurement to investigate the underlying unsteady aerodynamic mechanisms of hovering hawkmoths. Using a single vortex ring model, three aerodynamic force components, such as aerodynamic force induced by unsteady circulation, vortex loop size variation and added mass, are estimated within a dimensionless time (normalized by one wing beat cycle) range of 0.418 < < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!