The dual role of ATG7: Regulation of autophagy and apoptosis in porcine ovarian follicular granulosa cells.

Anim Reprod Sci

Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China. Electronic address:

Published: November 2024

The regulation of mammalian ovarian development involves the coordinated processes of autophagy and apoptosis. The autophagy-related gene ATG7 plays a pivotal role in mediating crosstalk between these pathways. Despite its recognized importance, the specific function of ATG7 in ovarian follicular granulosa cells remains poorly understood. This study aimed to explore the effects of ATG7 overexpression on apoptosis and autophagy in porcine ovarian follicular granulosa cells and thereby provide insights into the interplay between these fundamental cellular mechanisms. An ATG7 overexpression vector was introduced into cells, followed by assessment of cell proliferation using the CCK-8 assay, quantification of related gene expression via real-time quantitative PCR and western blotting, and evaluation of apoptosis using TUNEL staining. ATG7 exhibited a predominant cytoplasmic localization and additional nuclear expression in porcine ovarian follicular granulosa cells. The transfection efficiency of the vector was initially verified, indicating that its overexpression notably increased expression of ATG7 protein. Further investigations confirmed that overexpression of ATG7 inhibited cell proliferation, stimulated autophagy, and promoted apoptosis in these cells. In summary, overexpression of ATG7 influences the viability of porcine ovarian follicular granulosa cells by regulating the interplay between autophagy and apoptosis. This study not only broadens the understanding of functional regulation of autophagy and apoptosis by ATG7, but also sheds light on the intricate mechanisms governing ovarian follicular atresia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anireprosci.2024.107601DOI Listing

Publication Analysis

Top Keywords

ovarian follicular
24
follicular granulosa
20
granulosa cells
20
autophagy apoptosis
16
porcine ovarian
16
atg7
10
regulation autophagy
8
atg7 overexpression
8
cell proliferation
8
overexpression atg7
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!