In this study, a new family of ethacrynic acid-sulfonamides and indazole-sulfonamides was synthesized and tested in vitro against MDA-MB-468 triple-negative breast cancer cells and PBMCs human peripheral blood mononuclear cells, using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. The aim of this research is to discover novel compounds with potential therapeutic effects on breast cancer. The antiproliferative activity of these compounds showed a significant dose-dependent activity, with IC values ranging between 2.83 and 7.52 µM. The lead compounds 8 and 9 displayed similar IC values to paclitaxel with 2.83, 3.84 and 2.72 µM, respectively. This highlights the novelty and potential of these compounds as alternatives to current treatments. The binding properties of 8, 9, and paclitaxel with the active sites of the PARP1(Poly(ADP-ribose) polymérase 1) and EGFR (Epidermal growth factor receptor) proteins were analyzed by molecular docking methods showing, for PARP1 protein, binding affinities of -9.8 Kcal /mol, -10 Kcal /mol, and -9.4 Kcal /mol, respectively. While their binding affinities for EGFR protein are -7.5 Kcal/mol, -7.2 Kcal/mol and -6.9 Kcal/mol, respectively. Moreover, drug-likeness and ADMET (Absorption-distribution-metabolism-excretion-toxicity) analyses demonstrated that both molecules are orally bioavailable and have good pharmacokinetic and non-toxic profiles. DFT (Density functional theory) was also carried out on both compounds 8 and 9 additionally to POM (Petra/Osiris/Molinspiration) studies on all compounds. The outcomes of this study suggest that compounds 8 and 9 are promising candidates for further development as therapeutic agents against triple-negative breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2024.108214DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
kcal /mol
12
triple-negative breast
8
binding affinities
8
compounds
7
design synthesis
4
synthesis in-vitro
4
in-vitro in-silico
4
in-silico dft
4
dft pom
4

Similar Publications

Ultrasound-responsive nanoparticles for nitric oxide release to inhibit the growth of breast cancer.

Cancer Cell Int

December 2024

Department of Ultrasound, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.

Gas therapy represents a promising strategy for cancer treatment, with nitric oxide (NO) therapy showing particular potential in tumor therapy. However, ensuring sufficient production of NO remains a significant challenge. Leveraging ultrasound-responsive nanoparticles to promote the release of NO is an emerging way to solve this challenge.

View Article and Find Full Text PDF

Targeting CDK2 to circumvent treatment resistance in HR breast cancer.

Trends Mol Med

December 2024

Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA. Electronic address:

Genetic and epigenetic defects of the p53 system have previously been associated with resistance to CDK4/6 inhibitors in women with HR breast cancer. Recent data from Kudo et al. demonstrate that CDK2-targeting agents may offer an effective strategy to circumvent such resistance by enforcing cellular senescence downstream of RBL2 dephosphorylation.

View Article and Find Full Text PDF

Dabrafenib upregulates hypoglycosylated MUC1 and improves the therapeutic efficacy of Tn-MUC1 CAR-T cells.

Sci Bull (Beijing)

December 2024

Breast Cancer Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China. Electronic address:

View Article and Find Full Text PDF

Computational Pathology Detection of Hypoxia-Induced Morphological Changes in Breast Cancer.

Am J Pathol

December 2024

Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom.

Understanding the tumor hypoxic microenvironment is crucial for grasping tumor biology, clinical progression, and treatment responses. This study presents a novel application of AI in computational histopathology to evaluate hypoxia in breast cancer. Weakly Supervised Deep Learning (WSDL) models can accurately detect morphological changes associated with hypoxia in routine Hematoxylin and Eosin (H&E) whole slide images (WSI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!