Background: Explosive ordnance disposal (EOD) technicians may be required to work in hot, humid environments while wearing heavy protective clothing. We investigated the ability of an ice vest to attenuate physiological strain and subsequently extend work tolerance.

Methods: Eight male participants (24.3 ± 4.1 yr, 51.9 ± 4.6 mL kg min) walked (4.5 km h) in simulated hot and humid conditions (35 °C; 50% relative humidity). Participants wore either an EOD suit (CON) or EOD and ice vest (IV). Heart rate, core and skin temperature were recorded continuously.

Results: Participants walked longer in IV compared to CON (8.1 ± 7.4 min, p < .05). Over 90% of trials were terminated based on participants reaching 90% of their maximum heart rate. IV resulted in cooled skin (p < .001) and a physiologically negligible change in core temperature (p < .001). A condition by time interaction was identified for heart rate (p < .001), with a lower rate of rise in the IV condition.

Conclusions: The cardiovascular inefficiency that limited performance was attenuated in the IV condition. The ice vest facilitated heat loss from the periphery; thus, the observed reduction in heart rate may reflect the preservation of central blood volume. The results identify the efficiency of a simple, inexpensive ice vest to assist EOD technicians working in the heat.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apergo.2024.104388DOI Listing

Publication Analysis

Top Keywords

hot humid
12
explosive ordnance
8
ordnance disposal
8
protective clothing
8
humid conditions
8
ice vest
8
ice vests
4
vests extend
4
extend physiological
4
physiological work
4

Similar Publications

Comparative analysis of thermoregulation models to assess heat strain in moderate to extreme heat.

J Therm Biol

December 2024

School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA; Julie Ann Wrigley Global Futures Laboratory, Arizona State University, Tempe, AZ, 85287, USA. Electronic address:

As global temperatures rise due to climate change, the frequency and intensity of heatwaves are increasing, posing significant threats to human health, productivity, and well-being. Thermoregulation models are important tools for quantifying the risk of extreme heat, providing insights into physiological strain indicators such as core and skin temperatures, sweat rates, and thermal comfort levels. This study evaluated four thermoregulation models of varying complexity, differentiated by the geometry and underlying thermoregulatory mechanisms.

View Article and Find Full Text PDF

Vernacular architecture, optimized over centuries to create comfortable thermal environments using sustainable design strategies and local materials, can offer valuable insights for contemporary eco-friendly architectural design. This research investigates the sustainable design strategies of vernacular architecture in southwest Hubei, focusing on the First Granary of Xuan'en County as a representative case study. Through field investigations of indoor environments, this study explores how traditional architectural practices have addressed the region's complex mountainous terrain and hot, humid climate.

View Article and Find Full Text PDF

Older adults are vulnerable to heat-related morbidity and mortality due to reduced thermoregulatory function associated with aging. The aim of this study was to examine the relationship between age and thermoregulatory behaviour during walking exercise in Control (22 °C; 40% relative humidity [RH]) and Hot (35 °C, 40% RH) conditions. Thirty-six healthy males (age 46 ± 20 (range 19-86) years; stature 177 ± 7 cm; body mass 75.

View Article and Find Full Text PDF

Trace measurement of aerosol chemical composition in workplace atmospheres requires the development of high-throughput aerosol collectors that are compact, hand-portable, and can be operated using personal pumps. We describe the design and characterization of a compact, high flow, Turbulent-mixing Condensation Aerosol-in-Liquid Concentrator (TCALC) that allows direct collection of aerosols as liquid suspensions, for off-line chemical, biological, or microscopy analysis. The TCALC unit, measuring approximately 12 × 16 × 18 cm, operates at an aerosol sample flowrate of up to 10 L min, using rapid mixing of a hot flow saturated with water vapor and a cold aerosol sample flow, thereby promoting condensational growth of aerosol particles.

View Article and Find Full Text PDF

Hu sheep is characterized by its excellent fecundity and high adaptability to various ecological environments. To reveal the molecular basis involved in Hu sheep, we first examined the 10 index of neuroendocrine and metabolism in blood in Hu sheep during non-stress period (April-May) and stress period (July-August) using ELISA, including CRH, adrenocorticotropic hormone (ACTH), cortisol, aldosterone, adrenaline, T3,T4, SOD, GSH-PX, and T-AOC. Then we conducted the Whole genome DNA methylation sequencing in blood and performed the comparative analysis of global DNA methylation between the non-stress period and the stress period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!