A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Operando electron spin probes for the study of battery processes. | LitMetric

Operando electron spin probes for the study of battery processes.

J Magn Reson

Materials Department, University of California, Santa Barbara, CA 93106, USA; Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA. Electronic address:

Published: November 2024

Operando electron spin probes, namely magnetometry and electron paramagnetic resonance (EPR), provide real-time insights into the electrochemical processes occurring in battery materials and devices. In this work, we describe the design criteria and outline the development of operando magnetometry and EPR electrochemical cells. Notably, we show that a clamping mechanism, or springs, are needed to achieve sufficient compression of the battery stack and an electrochemical performance on par with that of a standard Swagelok-type cell. The tandem use of operando EPR and magnetometry allows us to identify five distinct and reversible redox processes taking place on charge and discharge of the intercalation-type LiNiMnO Li-ion cathode. While redox processes in conversion-type electrodes are notoriously difficult to investigate using standard characterization methods (e.g. X-ray based) and/or post mortem analysis, due to the formation of poorly crystalline and metastable reaction intermediates and products during cycling, we show that operando magnetometry provides unique insight into the kinetics and reversibility of Fe nanoparticle formation in the NaFeF electrode for Na-based batteries. Step increases in the cell magnetization upon extended cycling indicate the build-up of Fe nanoparticles in the system, hinting at only partially reversible charge-discharge processes. The broad applicability of the tools developed herein to a range of electrode chemistries and structures, from intercalation to conversion electrodes, and from crystalline to amorphous systems, makes them particularly promising for the development of electrochemical energy storage technologies and beyond.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2024.107772DOI Listing

Publication Analysis

Top Keywords

operando electron
8
electron spin
8
spin probes
8
operando magnetometry
8
redox processes
8
operando
5
processes
5
probes study
4
study battery
4
battery processes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!