In this study, bio-based composite films from nanocellulose, tannin and chitosan were fabricated. First, tannin was covalently immobilized onto dialdehyde CNCs (DACNCs) through the nucleophilic reaction to obtain TA-CNCs. TA-CNCs were then added into chitosan matrix as the nanofillers to obtain chitosan-TA-CNC (CS-TA-CNC) films. Compared with pure chitosan film, the water solubility, swelling ratio, water vapor and oxygen barrier properties of CS-TA-CNC films decreased, indicating the improved water-resistant and barrier properties. The composite films exhibited high UV blocking, antioxidant capacity and antimicrobial properties against both E. coli and S. aureus. CS-TA-CNC film with a TA-CNC content of 10 % exhibited the highest tensile strength (77.57 MPa) and toughness (23.51 MJ/m), 2.23 and 2.5 times higher than that of pure chitosan film, respectively. The composite films extended postharvest life of tomato cherries compared to the pure chitosan film. Films prepared from sustainable bioresources show promising potential for use in active packaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.141274 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!