Beneficial effects of Lactobacillus plantarum on growth performance, immune status, antioxidant function and intestinal microbiota in broilers.

Poult Sci

Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China. Electronic address:

Published: December 2024

Lactobacillus plantarum (L. plantarum) has been globally regarded as antibiotic alternative in animal farming in the past few years. However, the potential function of L. plantarum in broilers has not been systemically explored. In this study, a total of 560 one-day-old yellow-feathered broilers were randomly divided into 3 groups, fed with basal diet and drank with L. plantarum HJZW08 (LP) at the concentration of 0 (CON), 1000 × 10^5 (LP1000), and 2000 × 10^5 CFU/L (LP2000) for 70 d. Results showed that the body weight (BW), average daily gain (ADG), average daily feed intake (ADFI), immunoglobulin A (IgA), IgY, and anti-inflammatory interleukin 10 (IL-10) were markedly improved (P < 0.05), while the levels of pro-inflammatory IL-2, IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) in serum were decreased (P < 0.05) in the LP2000 group comparing with the CON group. Besides, LP treatment groups prominently increased the levels and activities of antioxidant enzymes and decreased the content of malondialdehyde (MDA). Additionally, the levels of isobutyric acid in the LP1000 and LP2000 groups and isovaleric acid in the LP2000 group were significantly improved. More importantly, the α-diversity and microbial structure of intestinal microbiota were pronounced altered by LP supplementation. The results showed that only the relative abundance of Actinobacteriota was significantly increased in the LP2000 group, while 6 kinds of bacteria on genus level were significantly changed. For further validation, linear discriminant analysis with effect size (LEfSe) plots revealed that 8 amplicon sequence variants (ASVs) were predominant in the CON group, while Bacteroides and other beneficial species such as Lactimicrobium massiliense (ASV4 and ASV36), Intestinimonas butyriciproducens (ASV71), and Barnesiella viscericola (ASV152 and ASV571) were enriched in the LP groups. Taken together, dietary supplementation with LP obviously enhanced the immune status, antioxidant capacity, and stabilized the cecal microbiota and SCFAs, contributing to the improvement of growth performance of broilers. Our study laid good foundation for the application of probiotic Lactobacillus in animal industry in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437764PMC
http://dx.doi.org/10.1016/j.psj.2024.104280DOI Listing

Publication Analysis

Top Keywords

lp2000 group
12
lactobacillus plantarum
8
growth performance
8
immune status
8
status antioxidant
8
intestinal microbiota
8
average daily
8
con group
8
plantarum
5
lp2000
5

Similar Publications

Beneficial effects of Lactobacillus plantarum on growth performance, immune status, antioxidant function and intestinal microbiota in broilers.

Poult Sci

December 2024

Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China. Electronic address:

Lactobacillus plantarum (L. plantarum) has been globally regarded as antibiotic alternative in animal farming in the past few years. However, the potential function of L.

View Article and Find Full Text PDF

CRISPR/Cas9-based multiplex genome editing via electroporation is relatively efficient; however, lipofection is versatile because of its ease of use and low cost. Here, we aimed to determine the efficiency of lipofection in CRISPR/Cas9-based multiplex genome editing using growth hormone receptor (GHR) and glycoprotein alpha-galactosyltransferase 1 (GGTA1)-targeting guide RNAs (gRNAs) in pig zygotes. Zona pellucida-free zygotes were collected 10 h after in vitro fertilization and incubated with Cas9, gRNAs, and Lipofectamine 2000 (LP2000) for 5 h.

View Article and Find Full Text PDF

Evaluation of a novel poly(amidoamine) with pendant aminobutyl group on the cellular properties of transfected bone marrow mesenchymal stem cells.

J Biomed Mater Res A

March 2018

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Stem cell-based gene therapy has been considered in the treatment of many degenerative diseases. Gene-modified stem cells should maintain its reproductive activity without losing stem cell properties, including genetic phenotype and differentiation potential. In the study, a novel poly (amidoamine) with pendant aminobutyl group (PAA-BA) designed by our group was used in the transfection of bone marrow mesenchymal stromal cells (BMSCs) and the cellular properties post-transfection were evaluated, including DNA content, colony forming capacity, genetic phenotype, and multi-directional differentiation.

View Article and Find Full Text PDF
Article Synopsis
  • This study aimed to investigate how cationic liposome-mediated delivery of the antisense-VEGF gene affects the growth of laryngeal cancer cells in nude mice.
  • The researchers successfully cloned the VEGF gene and used cationic liposomes to transfect Hep-2 cells, leading to smaller tumor sizes in treated mice compared to control groups.
  • The results showed a significant decrease in VEGF expression and demonstrated that the growth of Hep-2 cells could be effectively inhibited through this gene transfection method.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!