Fluxapyroxad, an emerging succinate dehydrogenase inhibitor fungicide, is widely used due to its excellent properties. Given its persistence in soil with a 50 % disappearance time of 183-1000 days, it is crucial to evaluate the long-term effects of low-dose fluxapyroxad on non-target soil organisms such as earthworms (Eisenia fetida). The present study investigated the impacts of fluxapyroxad (0.01, 0.1, and 1 mg kg) on Eisenia fetida over 56 days, focusing on oxidative stress, digestive and nervous system functions, and histopathological changes. We also explored the mechanisms of fluxapyroxad-enzyme interactions through molecular docking and dynamics simulations. Results demonstrated a significant dose-response relationship in the integrated biomarker response of 12 biochemical indices. Fluxapyroxad altered expression levels of functional genes and induced histopathological damage in earthworm epidermis and intestines. Molecular simulations revealed that fluxapyroxad is directly bound to active sites of critical enzymes, potentially disrupting their structure and function. Even at low doses, long-term fluxapyroxad exposure significantly impacted earthworm physiology, with effects becoming more pronounced over time. Our findings provide crucial insights into the chronic toxicity of fluxapyroxad and emphasize the importance of long-term, low-dose studies in pesticide risk assessment in soil. This research offers valuable guidance for the responsible management and application of fungicides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.135911 | DOI Listing |
Pestic Biochem Physiol
December 2024
College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
Rice false smut, caused by Ustilaginoidea virens, is a devastating fungal disease in rice that not only leads to yield reduction but also poses a serious threat to food safety and human health due to the production of numerous mycotoxins. Pydiflumetofen, one of the most promising SDHI fungicides widely used for controlling various plant diseases, lacks available information regarding its antifungal activity against U. virens and the potential risk of resistance development in this pathogen.
View Article and Find Full Text PDFSci Total Environ
December 2024
State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China. Electronic address:
Succinate dehydrogenase inhibitors (SDHIs) are widely utilized fungicides that have been detected in various environments, raising significant concerns regarding their toxicity to aquatic organisms. A comprehensive analysis of SDHIs contamination and associated ecological risks has been challenging due to scattered data and varying scale. This study consolidated residue data from 194 aquatic environments across six regions, up to June 2024, providing an overview of SDHIs distribution and conducting a global-scale aquatic ecological risk assessment.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2024
College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Provincial Center for Bio-Pesticide Engineering, Yangling 712100, Shaanxi, China. Electronic address:
Northern corn leaf blight (NCLB) infected by Setosphaeria turcica is a devastating disease of corn worldwide. Flusilazole is a broad-spectrum triazole fungicide. However, its resistance risk and field efficiency in controlling NCLB are still unknown.
View Article and Find Full Text PDFJ Agric Food Chem
November 2024
Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
Plants (Basel)
September 2024
Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Chillán 3812120, Chile.
Fungal trunk disease (FTD) poses a significant threat to hazelnut ( L.) production worldwide. In Chile, the fungus , from the Botryosphaeriaceae family, has been frequently identified causing this disease in the Maule and Ñuble Regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!