Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Micro-Meteoroid and Orbital Debris pose a significant threat to the safe operation of orbiting spacecraft, potentially leading to mission failure in space exploration. Quantitative characterization of hypervelocity impact (HVI) is crucial to ensure the safety and successful completion of on-orbit missions. Firstly, this study designed a three-layer sandwich structure of polyimide film with orthogonally laid resistive wires, combined with piezoelectric and resistive wire sensors, for the simultaneous acquisition of acoustic emission (AE) signals generated by HVI and measurement of perforation dimensions. Secondly, a semi-analytical finite element (SAFE) analysis of wave dispersion properties in the periodic sandwich structure is conducted with Bloch's theorem, together with a hybrid model based on three-dimensional smoothed particle hydrodynamics and finite element methods (SPH-FEM) to comprehensively understand the AE waves and damage characteristics induced by HVI. The resulting anisotropic wave propagation characteristics with SAFE and SPH-FEM are closely matched. Thirdly, a time delay-multiplication (TDM) imaging algorithm considering wave velocity anisotropy is proposed for accurate real-time "visualization" of HVI locations. Lastly, correlations are established between projectile and perforation dimensions. The proposed algorithm for HVI multi-parameter quantification and damage detection helps evaluate the space HVI environment and HVI-induced damage to spacecraft.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultras.2024.107471 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!