There is an interplay between the gonadotropin-releasing hormone (GnRH) and melatoninergic systems. The key enzyme of melatonin synthesis (arylalkylamine N-acetyltransferase, AANAT), and GnRH receptors are expressed in the hippocampus. While it has been shown that hippocampal AANAT enzyme activity is necessary for proper hippocampal cognitive function, their role in long-term potentiation (LTP) induction is not fully understood. In current study, the impact of GnRH on LTP induction was investigated, while hippocampal melatonin synthesis had been inhibited. The melatonin synthesis was inhibited by AANAT-siRNA administration, and LTP was induced using in vivo field potential electrophysiological recording. Animals were divided into 5 groups: Intact, vehicle, siRNA, GnRH and siRNA+GnRH. All animals, except intact group, experienced the stereotaxic surgery and intra-hippocampal cannulation to receive vehicle agent, AANAT siRNA (0.5 μg/hip), GnRH (1 ng/rat), and AANAT siRNA+GnRH. The recognition memory was assessed by Novel object recognition test. The field potential electrophysiology experiment was conducted by stimulating the Schaffer collateral pathway, and LTP induction was carried out through high-frequency stimulation (HFS). After recording, animals' brain was isolated and quickly frozen for further hippocampal melatonin levels measurement by LC-MS and AANAT mRNA levels by qRT-PCR. GnRH injection in the hippocampus increased local AANAT-mRNA expression and melatonin levels. GnRH-treated animals displayed higher LTP amplitude compared to intact, vehicle and siRNA groups. While the reduction in hippocampal melatonin levels by AANAT-siRNA inhibited LTP and impaired recognition memory, the GnRH prevented these adverse effects. The data suggests that GnRH have protective effects against AANAT-siRNA-induced LTP decline. The protective mechanism at least partially, may be related to the increased expression of local AANAT-mRNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.npep.2024.102474 | DOI Listing |
Pigment Cell Melanoma Res
January 2025
Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.
Circadian regulation of skin pigmentation is essential for thermoregulation, ultraviolet (UV) protection, and synchronization of skin cell renewal. This regulation involves both cell-autonomous photic responses and non-cell-autonomous hormonal control, particularly through melatonin produced in a light-sensitive manner. Photosensitive opsins, cryptochromes, and melatonin regulate circadian rhythms in skin pigment cells.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
Circadian rhythm plays a critical role in the progression of autoimmune diseases. While our previous study demonstrated the therapeutic effects of melatonin in experimental autoimmune uveitis, the involvement of circadian rhythm remained unclear. Using a light-induced circadian rhythm disruption model, we showed that disrupted circadian rhythms exacerbate autoimmune uveitis by impairing the stability and function of Treg cells.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.
Background: Dietary supplementation for beef cattle, using natural plant extracts, such as oregano essential oil (OEO), has proven effective in enhancing growth performance, beef production quantity and quality, and ensuring food safety. However, the precise mechanisms underlying these effects remain unclear. This study investigated the impact of OEO on carcass traits, muscle fiber structure, meat quality, oxidative status, flavor compounds, and gene regulatory mechanisms in the longissimus thoracis (LT) muscles of beef cattle.
View Article and Find Full Text PDFJ Pineal Res
January 2025
Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.
Circadian clocks in the body drive daily cycles in physiology and behavior. A master clock in the brain maintains synchrony with the environmental day-night cycle and uses internal signals to keep clocks in other tissues aligned. Work in cell cultures uncovered cyclic changes in tissue oxygenation that may serve to reset and synchronize circadian clocks.
View Article and Find Full Text PDFBMJ Open
January 2025
IRCCS Mondino Foundation, Pavia, Italy
Introduction: Children with septo-optic-pituitary dysplasia (SOD) may experience a range of visual impairments and hormonal dysfunctions beyond developmental delay/intellectual disability. The literature describes sleep fragmentation, circadian rhythm disruptions and reduced sleep efficiency. These manifestations are believed to be closely linked to both structural and functional abnormalities associated with SOD, potentially disrupting the natural circadian rhythm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!