Sorghum grain traits are important agronomic traits directly related to yield and are key factors affecting the brewing process of distill liquor. Exploring the genes controlling those traits is of great significance for understanding the genetic mechanism of sorghum grain development. In this study, we conducted genotyping using Super-GBS technology on a recombinant inbred lines (RILs) population derived from the cross between "BTx623" and "Hongyingzi," consisting of 205 lines. The grain-related traits of the RIL population were investigated in Guiyang, Anshun in Guizhou, and Ledong in Hainan in China. By inclusive composite interval mapping (ICIM) method, a total of 47 quantitative trait locus (QTL) related to four grain traits (thousand grain weight, grain length, grain width, and length-width ratio) were identified across 10 chromosomes. Among them, 20 important QTL were repeatedly detected in multiple traits or environments and distributed on chromosomes 1 (1), 2 (2), 3 (5), 4 (5), 5 (1), 6 (2), 7 (2), 8 (1), and 9 (1). Six candidate genes were identified within the confidence interval of these QTL, and they are homologous to genes controlling rice grain development (OsMADS1, RGG2, OsNST1, SMG1, OsGRF8, and OsAP2-39). The results provide a basis for further cloning and functional verification of these candidate genes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13353-024-00904-wDOI Listing

Publication Analysis

Top Keywords

sorghum grain
12
grain traits
12
grain
8
genes controlling
8
grain development
8
candidate genes
8
traits
7
qtl
4
qtl analysis
4
analysis sorghum
4

Similar Publications

Bioenergy Production from Sorghum Distillers Grains via Dark Fermentation.

BioTech (Basel)

December 2024

Department of Environmental Science and Engineering, Feng Chia University, Taichung City 40724, Taiwan.

Sorghum distillers grains (SDGs) produced from a sorghum liquor company were used for generating biohydrogen via dark fermentation at pH 4.5-6.5 and 55 °C with a batch test, and the biohydrogen electricity generation potential was evaluated.

View Article and Find Full Text PDF

Heat stress affects various components of photosynthetic machinery of which Rubisco activation inhibition due to heat sensitive Rubisco activase (RCA) is the most prominent. Detailed comparison of RCA coding genes identified a tandem duplication event in the grass family lineage where the duplicated genes showed very different evolutionary pattern. One of the two genes showed high level of sequence conservation whereas the second copy, although present only 1.

View Article and Find Full Text PDF

High-throughput phenotyping is the bottleneck for advancing field trait characterization and yield improvement in major field crops. Specifically for sorghum ( L.), rapid plant-level yield estimation is highly dependent on characterizing the number of grains within a panicle.

View Article and Find Full Text PDF

In the present study, changes in the physicochemical indices, ethyl carbamate (EC) precursor and EC contents, and microbial communities of fermented grains under different fermentation patterns during strong-aroma (SAB) fermentation and changes in EC precursor and EC contents during distillation were investigated to study EC formation during these processes. In detail, the amounts of sorghum added in protocols C and D were half those added in protocols A and B (the normal SAB-producing technology). When fermented for about 30 to 35 days, the fermented grains of protocols A and C were, respectively, remixed with and second-distilled SAB (so-called "", HJJQ) and fermented for about 30 to 40 days.

View Article and Find Full Text PDF

Accurate counting of cereals crops, e.g., maize, rice, sorghum, and wheat, is crucial for estimating grain production and ensuring food security.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!