Disinfection with LED lamps is a promising ecological and economical substitute for mercury lamps. However, the optimal time/dose relationship needs to be established. Pathogen inactivation by UV-A primarily relies on induced reactive oxygen species (ROS) formation and subsequent oxidative damage. While effective against bacteria and enveloped viruses, non-enveloped viruses are less sensitive. In this study, we explored the disinfection properties of 10 W UV-A LED, emitting in the 365-375 nm range. UV-A at high values of irradiance (~ 0.46 W/cm) can potentially induce ROS formation and direct photochemical damage of the pathogen nucleic acids, thus improving the disinfection. The UV-A inactivation was evaluated for the bacterium Escherichia coli (E. coli), non-enveloped RNA bacteriophage MS2, and enveloped mammalian RNA virus-Semliki Forest virus (SFV). The 4 log10 reduction doses for E. coli and SFV were 268 and 241 J/cm, respectively. Furthermore, in irradiated E. coli, ROS production positively correlated with the inactivation rate. In the case of MS2 bacteriophage, the 2.5 log10 inactivation was achieved by 679 J/cm within 30 min of irradiation. The results demonstrate significant disinfection efficiency of non-enveloped virus MS2 using high-irradiance UV-A. This suggests a potential strategy for improving the inactivation of UV-A-unsusceptible pathogens, particularly non-enveloped viruses. Additionally, the direct UV-A irradiation of self-replicating viral RNA from SFV led to a significant loss of viral gene expression in cells transfected with the irradiated RNA. Therefore, the virus inactivation mechanism of high-irradiance UV-A LED can be partially determined by the direct damage of viral RNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s43630-024-00634-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!