Slurry spin coating is an effective approach for the fabrication of protonic ceramic electrolyte thin films. However, weak adhesion between the electrode and spin-coated electrolyte layers in electrochemical cells due to the low sinterability of the proton-conducting perovskite materials usually lead to a high interfacial resistance and thus a low performance. Herein, we report a method to improve the interfacial connection and boost the performance of protonic ceramic cells based on a BaZrCeYO (BZCY) electrolyte. Ni-BZCY anode functional layer, BZCY electrolyte layer and LaSrCoFeO-BZCY cathode functional layer are all fabricated by slurry spin coating. The electrode functional layers and the components of the electrolyte slurry influence the microstructure of the single cell and the kinetics of the electrochemical processes significantly. A peak power density of 2345 mW cm is achieved at 700 °C in the fuel cell mode, and a current density of -3.0 A cm is obtained at an applied voltage of 1.3 V in the electrolysis mode.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c08959 | DOI Listing |
Small
January 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
Enhancing the catalytic performance and durability of M-N─C catalyst is crucial for the efficient operation of proton exchange membrane fuel cells (PEMFCs) and Zn-Air batteries (ZABs). Herein, an approach is developed for the in situ fabrication of a MOFs-derived porous carbon material, co-loaded with Co nanoparticles (NPs) and Co-N sites and integrated onto Fe-doped carbon nanotubes (CNTs), named Co-NC/Fe-NCNTs. Incorporating polymer-wrapped CNTs improves MOFs dispersion annealing at high temperature, which amplifies the three-phase boundary (TPB) by generating much more mesopores and exposing additional active sites within the catalysts layer.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA.
Protonic ceramic electrochemical cells (PCECs) can operate at intermediate temperatures (450° to 600°C) for power generation and hydrogen production. However, the operating temperature is still too high to revolutionize ceramic electrochemical cell technology. Lowering the operating temperature to <450°C will enable a wider material choice and reduce system costs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China.
Proton conducting electrochemical cells (PCECs) are efficient and clean intermediate-temperature energy conversion devices. The proton concentration across the PCECs is often nonuniform, and characterizing the distribution of proton concentration can help to locate the position of rate-limiting reactions. However, the determination of the local proton concentration under operating conditions remains challenging.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Hydrogen and Electrochemistry, Idaho National Laboratory, Idaho Falls, ID 83415, United States.
Nanomaterials (Basel)
December 2024
The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
Developing highly active and durable non-noble metal catalysts is crucial for energy conversion and storage, especially for proton exchange membrane fuel cells (PEMFCs) and lithium-oxygen (Li-O) batteries. Non-noble metal catalysts are considered the greatest potential candidates to replace noble metal catalysts in PEMFCs and Li-O batteries. Herein, we propose a novel type of non-noble metal catalyst (Fe-Hf/N/C) doped with Hf into a mesoporous carbon material derived from Hf-ZIF-8 and co-doping with Fe and N, which greatly enhanced the activity and durability of the catalyst.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!