Interfacial Modification for High-Efficient Reversible Protonic Ceramic Cell with a Spin-Coated BaZrCeYO Electrolyte Thin Film.

ACS Appl Mater Interfaces

Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo FI-00076, P.O. Box 16100, Aalto, Finland.

Published: October 2024

Slurry spin coating is an effective approach for the fabrication of protonic ceramic electrolyte thin films. However, weak adhesion between the electrode and spin-coated electrolyte layers in electrochemical cells due to the low sinterability of the proton-conducting perovskite materials usually lead to a high interfacial resistance and thus a low performance. Herein, we report a method to improve the interfacial connection and boost the performance of protonic ceramic cells based on a BaZrCeYO (BZCY) electrolyte. Ni-BZCY anode functional layer, BZCY electrolyte layer and LaSrCoFeO-BZCY cathode functional layer are all fabricated by slurry spin coating. The electrode functional layers and the components of the electrolyte slurry influence the microstructure of the single cell and the kinetics of the electrochemical processes significantly. A peak power density of 2345 mW cm is achieved at 700 °C in the fuel cell mode, and a current density of -3.0 A cm is obtained at an applied voltage of 1.3 V in the electrolysis mode.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c08959DOI Listing

Publication Analysis

Top Keywords

protonic ceramic
12
electrolyte thin
8
slurry spin
8
spin coating
8
bzcy electrolyte
8
functional layer
8
electrolyte
6
interfacial modification
4
modification high-efficient
4
high-efficient reversible
4

Similar Publications

Optimizing the Coordination Energy of Co-N Sites by Co Nanoparticles Integrated with Fe-NCNTs for Boosting PEMFC and Zn-Air Battery Performance.

Small

January 2025

School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.

Enhancing the catalytic performance and durability of M-N─C catalyst is crucial for the efficient operation of proton exchange membrane fuel cells (PEMFCs) and Zn-Air batteries (ZABs). Herein, an approach is developed for the in situ fabrication of a MOFs-derived porous carbon material, co-loaded with Co nanoparticles (NPs) and Co-N sites and integrated onto Fe-doped carbon nanotubes (CNTs), named Co-NC/Fe-NCNTs. Incorporating polymer-wrapped CNTs improves MOFs dispersion annealing at high temperature, which amplifies the three-phase boundary (TPB) by generating much more mesopores and exposing additional active sites within the catalysts layer.

View Article and Find Full Text PDF

Protonic ceramic electrochemical cells (PCECs) can operate at intermediate temperatures (450° to 600°C) for power generation and hydrogen production. However, the operating temperature is still too high to revolutionize ceramic electrochemical cell technology. Lowering the operating temperature to <450°C will enable a wider material choice and reduce system costs.

View Article and Find Full Text PDF

Proton conducting electrochemical cells (PCECs) are efficient and clean intermediate-temperature energy conversion devices. The proton concentration across the PCECs is often nonuniform, and characterizing the distribution of proton concentration can help to locate the position of rate-limiting reactions. However, the determination of the local proton concentration under operating conditions remains challenging.

View Article and Find Full Text PDF

Revolutionizing Methane Transformation with the Dual Production of Aromatics and Electricity in a Protonic Ceramic Electrocatalytic Membrane Reactor.

ACS Appl Mater Interfaces

January 2025

Department of Hydrogen and Electrochemistry, Idaho National Laboratory, Idaho Falls, ID 83415, United States.

Article Synopsis
  • Using a protonic ceramic electrocatalytic membrane reactor, methane is converted into higher-value chemicals like benzene with high efficiency and minimal emissions.
  • The system achieved a 15.6% methane conversion rate and an 11.4% benzene yield, which outperform traditional thermochemical methods by 15.7% and 16.0%, respectively.
  • The reactor also effectively removes hydrogen, maintaining stable operation for 45 hours and allowing for catalyst regeneration, presenting a promising solution for reducing carbon impact in chemical processing.
View Article and Find Full Text PDF

Hf Doping Boosts the Excellent Activity and Durability of Fe-N-C Catalysts for Oxygen Reduction Reaction and Li-O Batteries.

Nanomaterials (Basel)

December 2024

The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.

Developing highly active and durable non-noble metal catalysts is crucial for energy conversion and storage, especially for proton exchange membrane fuel cells (PEMFCs) and lithium-oxygen (Li-O) batteries. Non-noble metal catalysts are considered the greatest potential candidates to replace noble metal catalysts in PEMFCs and Li-O batteries. Herein, we propose a novel type of non-noble metal catalyst (Fe-Hf/N/C) doped with Hf into a mesoporous carbon material derived from Hf-ZIF-8 and co-doping with Fe and N, which greatly enhanced the activity and durability of the catalyst.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!