A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Two-Dimensional Materials/Biopolymer-Based Antimicrobial Coatings to Thwart Biofilm Formation on Medical Implants. | LitMetric

Infections associated with medical implants due to bacterial adhesion and biofilm formation are a serious problem, leading to acute health risks to patients by compromising their immune system. Therefore, suppressing biofilm formation on biomedical implants is a challenging task, especially for overcoming the drug resistance of bacterial biofilms. Herein, a synergistic efficient surface coating method was developed to inhibit biofilm formation on a model medical implant by combining the antimicrobial property of trimethyl chitosan (TMC) with either 2D material graphene oxide (GO) or black phosphorus (BP) sheets using layer-by-layer (LbL) self-assembly. The multilayer coatings of TMC/GO and TMC/BP were optimized on the glass surface (a model implant) and characterized by using spectroscopic and microscopy techniques. Next, we investigated the antibiofilm formation properties of the TMC/GO and TMC/BP coatings on glass surfaces against both Gram-negative, (), and Gram-positive, (), bacteria. The antibiofilm formation was studied using crystal violet (CV) and live/dead assays. Both the live/dead and the CV assays confirmed that the TMC/2D material (2DM)-coated surfaces prevented biofilm formation much more effectively compared to the uncoated surfaces. Scanning electron microscopy analyses revealed that the bacteria were affected physically by incubating with TMC/2DM-coated surfaces due to membrane perturbation, thereby preventing cell attachment and biofilm formation. Further, BP composite coatings (TMC/BP) showed a much better ability to thwart biofilm formation than GO composite coatings (TMC/GO). Also, multilayer coatings showed superior cytocompatibility with human foreskin fibroblast (HFF). Our results demonstrate that the developed coatings TMC/2DMs could be potential candidates for thwarting biofilm formation on medical implants.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.4c00725DOI Listing

Publication Analysis

Top Keywords

biofilm formation
32
medical implants
12
formation
10
biofilm
8
thwart biofilm
8
formation medical
8
multilayer coatings
8
coatings tmc/go
8
tmc/go tmc/bp
8
antibiofilm formation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!