A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Understanding the Roles and Regulation Methods of Key Adsorption Species on Ni-Based Catalysts for Efficient Hydrogen Oxidation Reactions in Alkaline Media. | LitMetric

This review focuses on recent advancements in the development and understanding of nickel-based catalysts for the hydrogen oxidation reaction in alkaline media. Given the economic and environmental limitations associated with platinum group metals, nickel-based catalysts have emerged as promising alternatives due to their abundance, lower cost, and comparable catalytic properties. The review begins with an exploration of the fundamental HOR mechanisms, emphasizing the key roles of the reactive species in optimizing the catalytic activity of Ni-based catalysts. Thermodynamic and stability optimizations of nickel-based catalysts are thoroughly examined, focusing on alloying strategies, heteroatom incorporation, and the use of various support materials to enhance their catalytic performance and durability. The review also addresses the challenge of catalyst poisoning, particularly by carbon monoxide, and evaluates the effectiveness of different approaches to improve poison resistance. Finally, the review concludes by summarizing the key findings and proposing future research directions to further enhance the efficiency and stability of nickel-based catalysts for practical applications in anion exchange membrane fuel cells. The insights gained from this comprehensive analysis aim to contribute to the development of cost-effective and sustainable catalysts and facilitate the broader adoption of AEMFCs in the quest for clean energy solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202401346DOI Listing

Publication Analysis

Top Keywords

nickel-based catalysts
16
ni-based catalysts
8
hydrogen oxidation
8
alkaline media
8
catalysts
7
understanding roles
4
roles regulation
4
regulation methods
4
methods key
4
key adsorption
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!