The synthesis and biosynthesis of the complex saxitoxin (STX) structure have garnered significant interest. Previously, we hypothesized that the tricyclic skeleton of STX originates from the monocyclic precursor 11-hydroxy-IntC'2 during biosynthesis, although direct evidence has been lacking. In this study, we identified conditions to synthesize a proposed tricyclic biosynthetic intermediate, 12,12-dideoxy-decarbamoyloxySTX (dd-doSTX), along with its 6-epimer (6-epi-dd-doSTX) and a bicyclic compound, in a single step from di-Boc protected 11-hydroxy-IntC'2. The reaction mechanism involves successive aza-Michael addition of a guanidino amine to the conjugated olefin. Notably, both dd-doSTX and 6-epi-dd-doSTX were detected in a toxin-producing cyanobacterium, suggesting that the biosynthetic enzymes may generate these compounds via similar mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639635 | PMC |
http://dx.doi.org/10.1002/asia.202400834 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!