AI Article Synopsis

  • Tetrabenazine (TBZ) is a medicine that helps with moving too much, but we don't know everything about how it works in the brain.
  • In experiments, TBZ was found to stop certain brain chemicals from being stored and released properly, which affects movement and behavior in mice.
  • The study also showed that another drug, MDMA, could still make mice more active even when TBZ was affecting the brain's chemical release, helping us understand how these drugs work together.

Article Abstract

Background And Purpose: Tetrabenazine (TBZ), used for treating hyperkinetic disorders, inhibits vesicular monoamine transporter-2 (VMAT-2), which sequesters monoamines into vesicles for exocytosis. However, our knowledge of the effect of TBZ on monoaminergic transmission is limited. Herein, we provide neurochemical evidence regarding the effect of VMAT-2 inhibition on vesicular neurotransmitter release from the prefrontal cortex (PFC) and striatum (STR) (brain regions involved in characteristic TBZ treatment side effects). The interaction between TBZ and MDMA was also assessed regarding motor behaviour in mice.

Experimental Approach: Vesicular storage capacity and release of [H]-noradrenaline ([H]-NA), [H]-dopamine ([H]-DA), [H]-serotonin ([H]-5-HT), and [H]-acetylcholine ([H]-ACh) was studied in mouse PFC and STR ex vivo slice preparations using electrical field stimulation. Additionally, locomotor activity was assessed in vehicle-treated mice and compared with that of MDMA, TBZ, and co-administered animals (n = 6) using the LABORAS system.

Key Results: TBZ lowered the storage capacity and inhibited the vesicular release of [H]-NA and [H]-DA from the PFC, and [H]-DA and [H]-5-HT from the STR in a concentration-dependent manner. Unlike vesamicol (vesicular ACh uptake inhibitor), TBZ failed to inhibit the vesicular release of [H]-ACh from the PFC. When the vesicular storage of the investigated monoamines was inhibited by TBZ in the PFC and STR, MDMA induced the release of transmitters through transporter reversal; MDMA dose dependently increased locomotor activity in vivo.

Conclusion And Implications: Our observations provide neurochemical evidence explaining the mechanism of VMAT-2 inhibitors in the brain and support the involvement of dopaminergic and noradrenergic transmission in hyperkinetic movement disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1111/bph.17348DOI Listing

Publication Analysis

Top Keywords

vesicular storage
12
storage capacity
12
vesicular monoamine
8
vesicular
8
inhibits vesicular
8
capacity release
8
tbz
8
provide neurochemical
8
neurochemical evidence
8
pfc str
8

Similar Publications

Dysfunction of the endo-lysosomal intracellular Cholesterol transporter 2 protein (NPC2) leads to the onset of Niemann-Pick Disease Type C (NPC), a lysosomal storage disorder. Metabolic and homeostatic mechanisms are disrupted in lysosomal storage disorders (LSDs) hence we characterized a cellular model of NPC2 knock out, to assess alterations in organellar function and inter-organellar crosstalk between mitochondria and lysosomes. We performed characterization of lipid alterations and confirmed altered lysosomal morphology, but no overt changes in oxidative stress markers.

View Article and Find Full Text PDF

The quantitative analysis of vesicular neurotransmitters in neurons in situ is paramount for investigating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease (PD). Unfortunately, a direct approach for monitoring neurotransmitter chemistry in single vesicles in fresh brain tissue has remained inaccessible so far. Here, we introduce an innovative platform of single-vesicle electrochemistry (SVE) in fresh brain tissue, enabling the quantification of neurotransmitters at the single-vesicle level for both soma and varicosity.

View Article and Find Full Text PDF

Interactions of VMAT2 with CDCrel-1 and Parkin in Methamphetamine Neurotoxicity.

Int J Mol Sci

December 2024

Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA.

In recent years, methamphetamine (METH) misuse in the US has been rapidly increasing, and there is no FDA-approved pharmacotherapy for METH use disorder (MUD). In addition to being dependent on the drug, people with MUD develop a variety of neurological problems related to the toxicity of this drug. A variety of molecular mechanisms underlying METH neurotoxicity has been identified, including the dysfunction of the neuroprotective protein parkin.

View Article and Find Full Text PDF

Lipid-Based Nanoformulations for Drug Delivery: An Ongoing Perspective.

Pharmaceutics

October 2024

Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.

Oils and lipids help make water-insoluble drugs soluble by dispersing them in an aqueous medium with the help of a surfactant and enabling their absorption across the gut barrier. The emergence of microemulsions (thermodynamically stable), nanoemulsions (kinetically stable), and self-emulsifying drug delivery systems added unique characteristics that make them suitable for prolonged storage and controlled release. In the 1990s, solid-phase lipids were introduced to reduce drug leakage from nanoparticles and prolong drug release.

View Article and Find Full Text PDF

Development of Long-Term Stability of Enveloped rVSV Viral Vector Expressing SARS-CoV-2 Antigen Using a DOE-Guided Approach.

Vaccines (Basel)

October 2024

Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada.

Liquid formulations have been successfully used in many viral vector vaccines including influenza (Flu), hepatitis B, polio (IPV), Ebola, and COVID-19 vaccines. The main advantage of liquid formulations over lyophilized formulations is that they are cost-effective, as well as easier to manufacture and distribute. However, studies have shown that the liquid formulations of enveloped viral vector vaccines are not stable over extended periods of time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!