AI Article Synopsis

  • The study investigates the role of the ETO2::GLIS2 fusion oncogene in pediatric acute myeloid leukemia (AML), highlighting its connection to worse outcomes in patients.
  • The researchers developed models using lentiviral transduction and CRISPR-Cas9 to explore how ETO2::GLIS2 influences leukemia development in human fetal versus post-natal hematopoietic stem cells.
  • They found that the presence of specific human cytokines like IL3 and SCF is crucial for leukemogenesis, suggesting that a combination treatment targeting MEK and BCL2 could effectively reduce leukemia progression.

Article Abstract

Background: Several fusion oncogenes showing a higher incidence in pediatric acute myeloid leukemia (AML) are associated with heterogeneous megakaryoblastic and other myeloid features. Here we addressed how developmental mechanisms influence human leukemogenesis by ETO2::GLIS2, associated with dismal prognosis.

Methods: We created novel ETO2::GLIS2 models of leukemogenesis through lentiviral transduction and CRISPR-Cas9 gene editing of human fetal and post-natal hematopoietic stem/progenitor cells (HSPCs), performed in-depth characterization of ETO2::GLIS2 transformed cells through multiple omics and compared them to patient samples. This led to a preclinical assay using patient-derived-xenograft models to test a combination of two clinically-relevant molecules.

Results: We showed that ETO2::GLIS2 expression in primary human fetal CD34 hematopoietic cells led to more efficient in vivo leukemia development than expression in post-natal cells. Moreover, cord blood-derived leukemogenesis has a major dependency on the presence of human cytokines, including IL3 and SCF. Single cell transcriptomes revealed that this cytokine environment controlled two ETO2::GLIS2-transformed states that were also observed in primary patient cells. Importantly, this cytokine sensitivity may be therapeutically-exploited as combined MEK and BCL2 inhibition showed higher efficiency than individual molecules to reduce leukemia progression in vivo.

Conclusions: Our study uncovers an interplay between the cytokine milieu and transcriptional programs that extends a developmental window of permissiveness to transformation by the ETO2::GLIS2 AML fusion oncogene, controls the intratumoral cellular heterogeneity, and offers a ground-breaking therapeutical opportunity by a targeted combination strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414260PMC
http://dx.doi.org/10.1186/s12943-024-02110-yDOI Listing

Publication Analysis

Top Keywords

human fetal
8
eto2glis2
6
cells
5
developmental interplay
4
interplay transcriptional
4
transcriptional alterations
4
alterations targetable
4
cytokine
4
targetable cytokine
4
cytokine signaling
4

Similar Publications

Importance: Improving access to high-quality maternity care and reducing maternal morbidity and mortality are major policy priorities in the US. Previous research has primarily focused on access to general obstetric care rather than access to high-risk pregnancy care provided by maternal-fetal medicine subspecialists (MFMs).

Objective: To measure access to MFM services and determine patient factors associated with MFM service use, including MFM telemedicine.

View Article and Find Full Text PDF

The Future of Parenthood? Examining the Promise and Complexity of Pregnancy Robots in Reproductive Health.

J Med Syst

January 2025

Department of Pharmacology, MGM Medical College & Hospital, MGM Institute of Health Sciences (MGMIHS), Nerul, Navi Mumbai, 400706, India.

Advancements in reproductive technology are now approaching an unprecedented frontier: the pregnancy robot, a potential artificial womb capable of carrying a fetus from fertilization to birth. This innovation, by simulating the natural uterine environment, could redefine pregnancy and parenthood, offering transformative benefits for maternal and infant health. The pregnancy robot promises safer pathways for individuals with medical risks, LGBTQ + couples, and single parents, while also reducing the risks of complications like preeclampsia and preterm birth.

View Article and Find Full Text PDF

Glyphosate-Based Herbicide Stress During Pregnancy Impairs Intestinal Development in Newborn Piglets by Modifying DNA Methylation.

J Agric Food Chem

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.

Glyphosate-based herbicide (GBH), a feed contaminant, has been proven to impair the growth and development of humans and animals. Previous research has revealed that maternal toxin exposure during pregnancy could cause permanent fetal changes by epigenetic modulation. However, there was insufficient evidence of the involvement of DNA methylation in maternal GBH exposure-induced intestinal health of offspring.

View Article and Find Full Text PDF

The mechanistic target of rapamycin (mTOR) system is vital to placental development, formation, and function. Alterations in this system in the placenta have been associated with altered fetal growth. However, changes in placental mTOR signaling across gestation are poorly understood.

View Article and Find Full Text PDF

Glioblastoma Multiforme (GBM) is the most prevalent and highly malignant form of adult brain cancer characterized by poor overall survival rates. Effective therapeutic modalities remain limited, necessitating the search for novel treatments. Neurodevelopmental pathways have been implicated in glioma formation, with key neurodevelopmental regulators being re- expressed or co-opted during glioma tumorigenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!