AI Article Synopsis

  • Mycoplasmal pneumonia of sheep and goats (MPSG) is a significant disease affecting livestock, with Mycoplasma ovipneumoniae (Movi) being a major cause, prompting research into a fusion protein (Hsp70-P113) for detection and immunological study.
  • The study involved optimizing DNA sequences for the Hsp70 and P113 proteins, creating a recombinant plasmid, purifying the protein, and developing a serological test (i-ELISA) for Movi detection.
  • The final protein had a correct molecular weight and showed good reactivity in tests, with the i-ELISA showing specificity and sensitivity without cross-reacting with other Mycoplasma species, ensuring reliable detection

Article Abstract

Background: Mycoplasmal pneumonia of sheep and goats (MPSG) is an important infectious disease that threatens sheep and goat production worldwide, and Mycoplasma ovipneumoniae (Movi) is one of the major aetiological agents causing MPSG. The aim of this study was to investigate the immunological activity of the Hsp70‒P113 fusion protein derived from Movi and to develop a serological assay for the detection of Movi.

Methods: This study involved codon optimization of the dominant antigenic regions of Movi heat shock protein 70 (Hsp70) and adhesin P113. Afterwards, the optimized sequences were inserted into the prokaryotic expression vector pET-30a( +) through tandem linking with the aid of a linker. Once a positive recombinant plasmid (pET-30a-rHsp70-P113) was successfully generated, the expression conditions were further refined. The resulting double gene fusion target protein (rHsp70‒P113) was subsequently purified using ProteinIso® Ni-NTA resin, and the reactivity of the protein was confirmed via SDS‒PAGE and Western blot analysis. An indirect enzyme-linked immunosorbent assay (i-ELISA) technique was developed to detect Movi utilizing the fusion protein as the coating antigen. The specificity, sensitivity, and reproducibility of all methods were assessed after each reaction parameter was optimized.

Results: The resulting rHsp70-P113 protein had a molecular weight of approximately 51 kDa and was predominantly expressed in the supernatant. Western blot analysis demonstrated its favourable reactivity. The optimal parameters for the i-ELISA technique were as follows: the rHsp70-P113 protein was encapsulated at a concentration of 5 μg/mL; the serum was diluted at a ratio of 1:50; the HRP-labelled donkey anti-goat IgG was diluted at a ratio of 1:6,000. The results of the cross-reactivity assays revealed that the i-ELISA was not cross-reactive with other goat-positive sera against Mycoplasma mycodies subsp. capri (Mmc), Mycoplasma capricolum subsp. capripneumoniae (Mccp), Mycoplasma arginini (Marg), orf virus (ORFV) or enzootic nasal tumour virus of goats (ENTV-2). The sensitivity of this method is high, with a maximum dilution of up to 1:640. The results of the intra- and inter-batch replication tests revealed that the coefficients of variation were both less than 10%, indicating excellent reproducibility. The analysis of 108 clinical serum samples via i-ELISA and indirect haemagglutination techniques yielded significant findings. Among these samples, 43 displayed positive results, whereas 65 presented negative results, resulting in a positivity rate of 39.8% for the i-ELISA method. In contrast, the indirect haemagglutination technique identified 20 positive samples and 88 negative samples, resulting in a positivity rate of 18.5%. Moreover, a comparison between the two methods revealed a conformity rate of 78.7%.

Conclusion: The results obtained in this study lay the groundwork for advancements in the use of an Movi antibody detection kit, epidemiological inquiry, and subunit vaccines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414289PMC
http://dx.doi.org/10.1186/s12917-024-04274-7DOI Listing

Publication Analysis

Top Keywords

fusion protein
12
immunological activity
8
protein
8
mycoplasma ovipneumoniae
8
western blot
8
blot analysis
8
i-elisa technique
8
rhsp70-p113 protein
8
diluted ratio
8
indirect haemagglutination
8

Similar Publications

DS2 designer pre-fusion F vaccine induces strong and protective antibody response against RSV infection.

NPJ Vaccines

December 2024

Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China.

DS-Cav1, SC-TM, and DS2 are distinct designer pre-fusion F proteins (pre-F) of respiratory syncytial virus (RSV) developed for vaccines. However, their immunogenicity has not been directly compared. In this study, we generated three recombinant vaccines using the chimpanzee adenovirus vector AdC68 to express DS-Cav1, SC-TM, and DS2.

View Article and Find Full Text PDF

Engineering of nonribosomal peptide synthetases (NRPSs) could transform the production of bioactive natural product derivatives. A number of recent reports have described the engineering of NRPSs without marked reductions in yield. Comparative analysis of evolutionarily related NRPSs can provide insights regarding permissive fusion sites for engineering where recombination may occur during evolutionary processes.

View Article and Find Full Text PDF

Mechanistic modeling of anti-Langmuirian to Langmuirian behavior of Fc-fusion proteins in cation exchange chromatography.

J Chromatogr A

December 2024

Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China. Electronic address:

Development of a next-generation chromatographic model, capable of simultaneously meeting academic demands for thermodynamic consistency and industrial requirements in everyday project work, has become a focal point of research. In this study, anti-Langmuirian to Langmuirian (AL-L) elution behavior was observed in cation-exchange chromatographic separation of charge variants of industrial Fc-fusion proteins. To characterize this behavior, the multi-protein Mollerup activity model was integrated into the steric mass action (SMA) model, resulting in a new model named the generalized ion-exchange (nGIEX) isotherm for multi-protein systems.

View Article and Find Full Text PDF

ATM/ATR-Mediated DNA Damage Response Facilitates SARS-CoV-2 Spike Protein-Induced Syncytium Formation.

J Med Virol

January 2025

Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.

Multinucleated cells are present in lung tissues of patients infected by SARS-CoV-2. Although the spike protein can cause the fusion of infected cells and ACE2-expressing cells to form syncytia and induce damage, how host cell responses to this damage and the role of DNA damage response (DDR) signals in cell fusion are still unclear. Therefore, we investigated the effect of SARS-CoV-2 spike protein on the fusion of homologous and heterologous cells expressing ACE2 in vitro models, focusing on the protein levels of ATR and ATM, the major kinases responding to DNA damage, and their substrates CHK1 and CHK2.

View Article and Find Full Text PDF

Immune Cell Profiling Reveals a Common Pattern in Premetastatic Niche Formation Across Various Cancer Types.

Cancer Med

January 2025

Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.

Background: Metastasis is the major cause of cancer-related mortality. The premetastatic niche is a promising target for its prevention. However, the generality and cellular dynamics in premetastatic niche formation have remained unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!