The seascape comprises multiple environmental variables that interact with species biology to determine patterns of spatial genetic variation. The environment imposes spatially variable selective forces together with homogenizing and diverging drivers that facilitate or restrict dispersal, which is a complex, time-dependent process. Understanding how the seascape influences spatial patterns of genetic variation remains elusive, particularly in coastal upwelling systems. Here, we combine genome-wide SNP data, Lagrangian larval dispersal simulated over a hydrodynamic model, and ocean environmental information to quantify the relative contribution of ocean circulation and environmental heterogeneity as drivers of the spatial genetic structure of two congeneric intertidal limpets, Scurria scurra and S. araucana, along the central coast of Chile. We find that a genetic break observed in both limpet species coincides with a break in connectivity shown by the Lagrangian dispersal, suggesting that mean ocean circulation is an important seascape feature, in particular for S. scurra. For S. araucana, environmental variation appears as a better predictor of genetic structure than ocean circulation. Overall, our study shows broad patterns of seascape forcing on genetic diversity and contributes to our understanding of the complex ecological and evolutionary interactions along coastal upwelling systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415498PMC
http://dx.doi.org/10.1038/s41598-024-72841-xDOI Listing

Publication Analysis

Top Keywords

genetic structure
12
ocean circulation
12
environmental variation
8
spatial genetic
8
genetic variation
8
coastal upwelling
8
upwelling systems
8
scurra araucana
8
genetic
7
environmental
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!