Both plastics and CO are waste carbon resources, and their accumulation in nature has led to severe environmental pollution. However, simultaneously converting plastic waste and CO into value-added chemicals remains a challenge. Here we demonstrate a catalytic reforming process that converts plastics and CO into syngas over an electrified FeCrAl heating wire. The temperature of the electrified heating wire can quickly exceed 800 °C, facilitating the decomposition of polyethylene into gaseous hydrocarbons. The high-temperature heating wire promote the CO deoxygenation, resulting in the generation of CO, as well as the dehydrogenation of gaseous hydrocarbons. Significantly, the additional O species from CO and the carbon species from hydrocarbons can react to form CO, maintaining the high catalytic activity of the electrified heating wire. This novel approach is of paramount to achieving a circular economy in addressing the ongoing environmental crisis caused by the accumulation of plastic waste and excessive CO emissions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415348 | PMC |
http://dx.doi.org/10.1038/s41467-024-52515-y | DOI Listing |
A high-sensitivity hot-wire anemometer is proposed for use with a cobalt-doped fiber (CDF) based long-period grating (LPG) heated optically by a 1480 nm laser. The CDF-LPG absorbs laser power and generates heat inherently, thereby eliminating the need for both metal coating and mode coupling devices that are usually required in optical fiber grating anemometers. The dip wavelength of the CDF-LPG shifts with airflow velocity due to the cooling effect of the airflow.
View Article and Find Full Text PDFBeijing Da Xue Xue Bao Yi Xue Ban
February 2025
Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100101, China.
Objective: To compare the cyclic fatigue resistance of nickel-titanium files made by 3 new heat treatment in simulated S-shaped root canals at different temperatures.
Methods: Gold heat-treated nickel-titanium files TruNatomy (25 mm, tip size 26#/0.04) and ProTaper Gold (25 mm, tip size 25#/0.
J Prosthet Dent
January 2025
Undergraduate student, School of Mechanical Engineering, Shandong University of Technology, Zibo, PR China.
Statement Of Problem: Infrared radiation heating (IRH) technology has been innovatively applied to the annealing of selective laser melted (SLM) cobalt chromium (Co-Cr) frameworks. However, previous studies have not reported the effects of IRH on the warping deformation and mechanical properties of these frameworks.
Purpose: The purpose of this in vitro study was to investigate the effects of IRH on the warping deformation and mechanical properties of dental SLM Co-Cr alloy and to evaluate its potential applications in dental restorations.
Materials (Basel)
December 2024
Fraunhofer Institute for Machine Tools and Forming Technology IWU, Nöthnitzer Straße 44, 01187 Dresden, Germany.
Using a newly developed tool head with an additional rotational axis and a wire feed, wires can be directly processed in the fused filament fabrication (FFF) process. Thus, electrical structures such as conductive paths, coils, heating elements, or sensors can be integrated into polymer parts. However, the accuracy of the wire deposition in curved sections of the print track is insufficient.
View Article and Find Full Text PDFSci Rep
January 2025
Nanjing ShengNuo Heat Pipe Limited Company, Nanjing, 210009, China.
This study investigates the feasibility of using nano-thermal rod for deicing tunnel pavements in cold region. The heating performance of the nano-thermal rod was compared with that of carbon fiber heating wire under low voltage conditions. Experimental studies were conducted in a controlled environmental chamber to evaluate the effects of arrangement parameters (spacing, buried depth, input power) and environmental factors (ambient temperature and moisture) on heating rate and effectiveness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!