A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sacubitril/valsartan attenuated myocardial inflammation, fibrosis, apoptosis and promoted autophagy in doxorubicin-induced cardiotoxicity mice via regulating the AMPKα-mTORC1 signaling pathway. | LitMetric

Sacubitril/valsartan attenuated myocardial inflammation, fibrosis, apoptosis and promoted autophagy in doxorubicin-induced cardiotoxicity mice via regulating the AMPKα-mTORC1 signaling pathway.

Mol Cell Biochem

Department of Cardiology, Fujian Medical University Union Hospital, Fujian Cardiovascular Medical Center, Fujian Institute of Coronary Artery Disease, Fujian Cardiovascular Research Center, Fuzhou, 350001, People's Republic of China.

Published: September 2024

AI Article Synopsis

  • This study looked at how a medicine called sacubitril/valsartan (Sac/Val) might help protect the hearts of mice from damage caused by a cancer drug called doxorubicin (DOX).
  • They found that giving Sac/Val to mice helped reduce heart problems and inflammation caused by DOX when compared to mice that only got DOX.
  • The researchers believe that Sac/Val helps keep the heart healthy by reducing bad processes in heart cells and protecting against damage from oxidative stress.

Article Abstract

This study aimed to investigate the potential cardioprotective effects of sacubitril/valsartan (Sac/Val) in mice with doxorubicin (DOX)-induced cardiomyopathy, a common manifestation of cancer therapy-related cardiac dysfunction (CTRCD) associated with DOX. A total of thirty-two mice were equally classified into 4 groups: control group, DOX (total 24 mg/kg), Sac/Val (80 mg/kg), and Sac/Val + DOX (Sac/Val was given from seven days before doxorubicin administration). Neonatal rat ventricular myocytes was exposed to 5 µM of DOX for 6 h in vitro to mimic the in vivo conditions. A variety of techniques were used to investigate cardiac inflammation, fibrosis, apoptosis, and autophagy, including western blot, real-time quantitative PCR (RT-qPCR), immunohistochemistry, and fluorescence. Mice with DOX-induced cardiotoxicity displayed impaired systolic and diastolic function, characterized by elevated levels of cardiac inflammation, fibrosis, cardiomyocyte hypertrophy, apoptosis, and autophagy inhibition in the heart. Treatment with Sac/Val partially reversed these effects. In comparison to the control group, the protein expression of NLRP3, caspase-1, collagen I, Bax, cleaved caspase-3, and P62 were significantly increased, while the protein expression of Bcl-2 and LC3-II were significantly decreased in the myocardial tissues of the Dox-induced cardiomyopathy group. The administration of Sac/Val demonstrated the potential to partially reverse alterations in protein expression within the myocardium of mice with DOX-induced cardiotoxicity by modulating the AMPKα-mTORC1 signaling pathway and suppressing oxidative stress. Additionally, Sac/Val treatment may mitigate Dox-induced apoptosis and inhibition of autophagy in primary cardiomyocytes. Sac/Val seems to be cardioprotective against DOX-induced cardiotoxicity in the pre-treatment mice model. These findings could be attributed to the anti-inflammatory, antioxidant, anti-apoptotic, and de-autophagy effects of Sac/Val through regulation of the AMPKα-mTORC1 signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-024-05117-7DOI Listing

Publication Analysis

Top Keywords

inflammation fibrosis
12
ampkα-mtorc1 signaling
12
signaling pathway
12
dox-induced cardiotoxicity
12
protein expression
12
fibrosis apoptosis
8
sac/val
8
dox-induced cardiomyopathy
8
dox total
8
control group
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!